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Chapter 1

Introduction

Inferential statistics consists of two primary components: estimation and prediction. Estimation

refers to the process by which we infer values, properties and behavior about individual parameters

in our model. Prediction, on the other hand, refers to the process by which we draw inference about

an event that has not-yet occurred. The latter component is abundant in industry where the demand

to predict stock prices, movies individuals prefer, and even to predict new friend connections in a

network has sparked huge investments in research and given rise to research groups whose primary

goal is pushing the bounds and developing new predictive models.

However, though most attention is directed towards prediction, these two components are not

distinct. In fact, the success and reliability of many predictive models is contingent upon good,

efficient parameter estimation. Many of these models require the estimation of a precision matrix -

the inverse of the covariance matrix (frequently denoted as Ω) - that establishes the interaction and

covariance between random variables. For this reason, the last decade has seen an ever-expanding

community devoted to precision matrix estimation.

Among this community of researchers is Professor Adam Rothman and Aaron Molstad, Ph.D. whose

research will be a focal point of this manuscript. The two have published work on indirect mul-

tivariate linear regression (Molstad and Rothman (2016)) and classification with matrix-valued

predictors (Molstad and Rothman (2018)) but the focus of this manuscript is their 2017 paper

titled Shrinking Characteristics of Precision Matrix Estimators (Molstad and Rothman (2017)).

In it, they outline a framework to shrink a characteristic of a precision matrix - a concept that

exploits the fact that in many predictive models estimation of the precision matrix is only neces-
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CHAPTER 1. INTRODUCTION

sary through its product with another feature. They write in their manuscript that “to fit many

predictive models, only a characteristic of the population precision matrix needs to be estimated…

In binary linear discriminant analysis, the population precision matrix is needed for prediction only

through the product of the precision matrix and the difference between the two conditional distri-

bution mean vectors.” The purpose of the research detailed here began with the desire to expand

on this concept and to explore avenues that were mentioned but were not further investigated.

One of the research directions mentioned in the original paper was the application of their framework

to regression. Utilizing the fact that the population regression coefficient matrix 𝛽 ≡ Ω𝑥Σ𝑥𝑦 (where

Σ𝑥𝑦 is the cross-covariance matrix between the predictors, 𝑋, and the responses, 𝑌 , and Ω𝑥 is

the precision matrix for 𝑋), their framework allows for the simultaneous estimation of 𝛽 and Ω𝑥

with an embedded assumption potentially useful for superior prediction performance. In close

communication and collaboration with Professor Rothman, we wanted to explore this research

direction further. However, in order to build upon their work and contribute new material, there

were a number of concepts that needed to be learned along the way and this document will follow

that journey.

We will begin chapter two with a brief introduction to precision matrix estimation and the gaussian

log-likelihood function. This section will mention popular estimation methods and algorithms but

most discussion will be directed towards the ADMM algorithm. Discussion of the ADMM algorithm

will be useful as we begin detailing the shrinking characteristics of precision matrix estimators

framework (which may be referred to as SCPME), the so-called augmented ADMM algorithm,

and later the framework’s application to regression. Lastly, the document will end with two brief

tutorials for the R packages ADMMsigma and SCPME. These packages were developed by myself to

aid in simulation experiments and make it easier to branch into related research directions. Both

packages have since been published on CRAN.

1.0.1 Notation and Definitions

For strictly positive integers 𝑛 and 𝑝, we will denote ℝ𝑛×𝑝 as the class of real matrices with dimenson

𝑛×𝑝. The class of real, symmetric matrices with dimension 𝑝×𝑝 will be denoted as 𝕊𝑝 and 𝕊𝑝
+ if we

further require the object to be positive definite. The sample size and dimension of the predictor

vector in a given data set will most often be denoted as 𝑛 and 𝑝, respectively. If the dimension of

the response vector exceeds one, we will denote it as 𝑟.
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CHAPTER 1. INTRODUCTION

Most matrices will take the form of either Σ, the population covariance matrix, or Ω, the population

precision matrix. Note that the precision matrix is simply the inverse of the covariance matrix

(Ω ≡ Σ−1) and a subscript may be added to each if more than two random variables are considered

in a problem (Ω𝑥). A subscript star may also be added if the object is oracle - or known - a priori

(Ω∗). The oracle’s estimator that optimizes a pre-specified objective function will be denoted with

a hat (Ω̂).

There will be significant matrix algebra notation throughout the manuscript. The trace operator

sums the diagonal elements of a matrix and will take the form 𝑡𝑟 (⋅) and the exponential trace

operator will be denoted similarly as 𝑒𝑡𝑟 (⋅). The vector operator, 𝑣𝑒𝑐 (⋅), stacks the columns of a

matrix into a column vector. The determinant of a matrix A will be denoted as |A| but may also

take the form 𝑑𝑒𝑡 (A). The kronecker product of two matrices A and B will be denoted as A ⊗ B

and the element-wise product will be denoted as A ∘ B. Lastly, the Frobenius norm which sums

the square of all entries in a matrix will be denoted as ‖A‖𝐹 and we will define ‖A‖1 ∶= ∑𝑖,𝑗 ∣A𝑖𝑗∣
where the 𝑖-𝑗th element in matrix A is typically denoted as (A)𝑖𝑗 or simply A𝑖𝑗.
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Chapter 2

Precision Matrix Estimation

2.1 Background

The foundation of much of the precision matrix estimation literature is the gaussian negative log-

likelihood. Consider the case where we observe 𝑛 independent, identically distributed (iid) copies

of the random variable 𝑋, where the 𝑖th observation 𝑋𝑖 ∈ ℝ𝑝 is normally distributed with mean,

𝜇, and variance, Ω−1. That is, 𝑋𝑖 follows a 𝑝-dimensional normal distribution which is typically

denoted as 𝑋𝑖 ∼ 𝑁𝑝 (𝜇, Ω−1). By definition, this multivariate formulation implies the probability

distribution function, 𝑓 , is of the form

𝑓 (𝑋𝑖; 𝜇, Ω) = (2𝜋)−𝑝/2 |Ω|1/2 exp [−1
2 (𝑋𝑖 − 𝜇)′ Ω (𝑋𝑖 − 𝜇)]

Furthermore, because we assume that each observation is independent, the probability distribution

function for all 𝑛 observations 𝑋1, ..., 𝑋𝑛 is equal to

𝑓 (𝑋1, ..., 𝑋𝑛; 𝜇, Ω) =
𝑛

∏
𝑖=1

(2𝜋)−𝑝/2 |Ω|1/2 exp [−1
2 (𝑋𝑖 − 𝜇)′ Ω (𝑋𝑖 − 𝜇)]

= (2𝜋)−𝑛𝑝/2 |Ω|𝑛/2 etr [−1
2

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇) (𝑋𝑖 − 𝜇)′ Ω]

Therefore, the gaussian log-likelihood, 𝑙, for 𝜇 and Ω given 𝑋 = (𝑋1, .., 𝑋𝑛) can be written as
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2.1. BACKGROUND CHAPTER 2. PRECISION MATRIX ESTIMATION

𝑙(𝜇, Ω|𝑋) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑛
2 log |Ω| − 𝑡𝑟 [1

2
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝜇) (𝑋𝑖 − 𝜇)′ Ω]

The estimator for 𝜇 that maximizes the log-likelihood is ̂𝜇𝑚𝑙𝑒 = �̄� ≡ ∑𝑛
𝑖=1 𝑋𝑖/𝑛, so that the

partially maximized gaussian log-likelihood function for Ω is

𝑙(Ω|𝑋) = 𝑛
2 log |Ω| − 𝑡𝑟 [1

2
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�) (𝑋𝑖 − �̄�)′ Ω]

= 𝑛
2 log |Ω| − 𝑛

2 𝑡𝑟 (𝑆Ω)

where 𝑆 = ∑𝑛
𝑖=1 (𝑋𝑖 − �̄�) (𝑋𝑖 − �̄�)′ /𝑛 is the usual sample estimator for the population covariance

matrix, Σ. In addition to 𝜇, one could also derive the maximum likelihood estimator for Ω. By

setting the gradient of the partially maximized log-likelihood equal to zero, one could show that

Ω̂𝑚𝑙𝑒 = arg max
Ω∈𝑆𝑝

+
{𝑛

2 log |Ω| − 𝑛
2 𝑡𝑟 (𝑆Ω)}

= arg min
Ω∈𝑆𝑝

+
{𝑡𝑟 (𝑆Ω) − log |Ω|}

= 𝑆−1

so that the MLE for Ω, when it exists, is Ω̂𝑚𝑙𝑒 = 𝑆−1 = [∑𝑛
𝑖=1 (𝑋𝑖 − �̄�) (𝑋𝑖 − �̄�)′ /𝑛]

−1
. The

reality, however, is that this object does not always exist. In settings where the number of ob-

servations is exceeded by the number of features in a sample, the sample covariance matrix is

rank deficient and no longer invertible. For this reason, many papers in the last decade have pro-

posed shrinkage estimators of the population precision matrix similar to the shrinkage estimators

in regression settings. That is, instead of minimizing solely the negative log-likelihood function,

researchers have proposed minimizing the gaussian log-likelihood plus a penalty term, 𝑃 , where 𝑃
is often a function of the precision matrix.

Ω̂ = arg min
Ω∈𝑆𝑝

+
{𝑡𝑟 (𝑆Ω) − log |Ω| + 𝑃 (Ω)} (2.1)
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2.1. BACKGROUND CHAPTER 2. PRECISION MATRIX ESTIMATION

The penalties that have been proposed for precision matrix estimation are typically a variation

of the ridge penalty 𝑃 (Ω) = 𝜆‖Ω‖2
𝐹 /2 or the lasso penalty 𝑃 (Ω) = 𝜆 ‖Ω‖1 (here 𝜆 is a tuning

parameter). The authors, Yuan and Lin (2007), initially proposed the lasso-penalized gaussian

log-likelihood defined as

Ω̂ = arg min
Ω∈𝑆𝑝

+
{𝑡𝑟 (𝑆Ω) − log |Ω| + 𝜆 ∑

𝑖≠𝑗
∣Ω𝑖𝑗∣} (2.2)

so as not to penalize the diagonal elements of the precision matrix estimate. Other papers published

on the lasso-penalized gaussian likelihood precision matrix estimator include Rothman et al. (2008)

and Friedman et al. (2008). In addition, many efficient algorithms have been proposed to solve

for Ω̂, however, the most popular method is the graphical lasso algorithm (glasso) introduced by

Friedman et al. (2008). Their method utilizes an iterative block-wise coordinate descent algorithm

that builds upon the coordinate descent algorithm used in lasso-penalized regression.

Non-lasso, non-convex penalties were considered in Lam and Fan (2009) and Fan et al. (2009)

and other papers considered penalizations like the Frobenius norm (Rothman et al. (2014); Witten

and Tibshirani (2009); Price et al. (2015)). In fact, the latter two papers show that the resulting

minimizer can be solved in closed-form - which will be discussed later in this manuscript. However,

the penalty explored through the remainder of this chapter is not a lasso penality nor a ridge

penalty but, in fact, a convex combination of the two known as the elastic-net penalty:

𝑃 (Ω) = 𝜆 [1 − 𝛼
2 ‖Ω‖2

𝐹 + 𝛼 ‖Ω‖1]

with additional tuning parameter 0 ≤ 𝛼 ≤ 1. Clearly, when 𝛼 = 0 this penalty reduces to a ridge

penalty and when 𝛼 = 1 it reduces to a lasso penalty. Originally proposed in Zou and Hastie (2005)

in the context of regression, this penalty has since been popularized and is used in the penalized

regression R package glmnet. This penalty allows for additional flexibility but, despite this, no

published work to our knowledge has explored the elastic-net penalty in the context of precision

matrix estimation. We will show how to solve the following optimization problem in the next

section using the ADMM algorithm.

Ω̂ = arg min
Ω∈𝑆𝑝

+
{𝑡𝑟 (𝑆Ω) − log |Ω| + 𝜆 [1 − 𝛼

2 ‖Ω|2𝐹 + 𝛼 ‖Ω‖1]} (2.3)
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2.2. ADMM ALGORITHM CHAPTER 2. PRECISION MATRIX ESTIMATION

2.2 ADMM Algorithm

ADMM stands for alternating direction method of multipliers. The algorithm was largely popular-

ized by Stephen Boyd and his fellow authors in the book Distributed Optimization and Statistical

Learning via the Alternating Direction Method of Multipliers (Boyd et al., 2011). As the authors

state in the text, the “ADMM is an algorithm that is intended to blend the decomposability of

dual ascent with the superior convergence properties of the method of multipliers.” By closely

following Boyd’s descriptions and guidance in the published text, we will show in this section that

the ADMM algorithm is particularly well-suited to solve the penalized log-likelihood optimization

problem we are interested in here.

In general, the ADMM algorithm supposes that we want to solve an optimization problem of the

form

minimize 𝑓(𝑥) + 𝑔(𝑧)

subject to 𝐴𝑥 + 𝐵𝑧 = 𝑐

where we can assume here that 𝑥 ∈ ℝ𝑛, 𝑧 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑝×𝑛, 𝐵 ∈ ℝ𝑝×𝑚, 𝑐 ∈ ℝ𝑝, and 𝑓 and 𝑔 are

convex functions. In order to find the pair (𝑥∗, 𝑧∗) that achieves the infimum, the ADMM algorithm

uses an augmented lagrangian, 𝐿, which Boyd et al. (2011) define as

𝐿𝜌(𝑥, 𝑧, 𝑦) = 𝑓(𝑥) + 𝑔(𝑧) + 𝑦′(𝐴𝑥 + 𝐵𝑧 − 𝑐) + 𝜌
2 ‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖2

2

In this formulation, 𝑦 ∈ ℝ𝑝 is called the lagrange multiplier and 𝜌 > 0 is some scalar that acts as the

step size for the algorithm. Note that any infimum under the augmented lagrangian is equivalent to

the infimum of the traditional lagrangian since any feasible point (𝑥, 𝑧) must satisfy the constraint

𝜌 ‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖2
2 /2 = 0. Boyd et al. (2011) show that using the ADMM algorithm the infimum

will be approached under the following repeated iterations:
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2.2. ADMM ALGORITHM CHAPTER 2. PRECISION MATRIX ESTIMATION

𝑥𝑘+1 = arg min
𝑥∈ℝ𝑛

𝐿𝜌(𝑥, 𝑧𝑘, 𝑦𝑘)

𝑧𝑘+1 = arg min
𝑧∈ℝ𝑚

𝐿𝜌(𝑥𝑘+1, 𝑧, 𝑦𝑘)

𝑦𝑘+1 = 𝑦𝑘 + 𝜌(𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐)

where the superscript, 𝑘, denotes the number of iterations. Conveniently, this general algorithm

can be coerced into a format useful in precision matrix estimation. Suppose we let 𝑓 be equal to

the non-penalized gaussian log-likelihood, 𝑔 equal to the elastic-net penalty, 𝑃 (Ω), and we use the

constraint that Ω ∈ 𝕊𝑝
+ must be equal to some matrix 𝑍 ∈ ℝ𝑝×𝑝, then the augmented lagrangian in

the context of precision matrix estimation is of the form

𝐿𝜌(Ω, 𝑍, Λ) = 𝑓 (Ω) + 𝑔 (𝑍) + 𝑡𝑟 [Λ (Ω − 𝑍)] + 𝜌
2 ‖Ω − 𝑍‖2

𝐹

where Λ takes the role of 𝑦 as the lagrange multiplier. The ADMM algorithm now consists of the

following repeated iterations:

Ω𝑘+1 = arg min
Ω∈𝕊𝑝

+
{𝑡𝑟 (𝑆Ω) − log |Ω| + 𝑡𝑟 [Λ𝑘 (Ω − 𝑍𝑘)] + 𝜌

2 ∥Ω − 𝑍𝑘∥2
𝐹 }

𝑍𝑘+1 = arg min
𝑍∈𝕊𝑝

{𝜆 [1 − 𝛼
2 ‖𝑍‖2

𝐹 + 𝛼 ‖𝑍‖1] + 𝑡𝑟 [Λ𝑘 (Ω𝑘+1 − 𝑍)] + 𝜌
2 ∥Ω𝑘+1 − 𝑍∥2

𝐹 }

Λ𝑘+1 = Λ𝑘 + 𝜌 (Ω𝑘+1 − 𝑍𝑘+1)

(2.4)

Furthermore, it turns out that each step in this algorithm can be solved efficiently in closed-form.

The full details of each can be found in the appendix A.0.1 but the following theorem provides the

simplified steps in the algorithm.

Theorem 2.1 (ADMM Algorithm for Elastic-Net Penalized Precision Matrix Estimation). Define

the soft-thresholding function as soft(𝑎, 𝑏) = sign(𝑎)(|𝑎|−𝑏)+ and 𝑆 as the sample covariance matrix.

Set 𝑘 = 0 and initialize 𝑍0, Λ0, and 𝜌. Repeat steps 1-3 until convergence:

1. Decompose 𝑆 + Λ𝑘 − 𝜌𝑍𝑘 = 𝑉 𝑄𝑉 ′ via spectral decomposition1. Then
1Proof of (2.5) in section A.0.1.
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2.2. ADMM ALGORITHM CHAPTER 2. PRECISION MATRIX ESTIMATION

Ω𝑘+1 = 1
2𝜌𝑉 [−𝑄 + (𝑄2 + 4𝜌𝐼𝑝)1/2] 𝑉 ′ (2.5)

2. Elementwise soft-thresholding for all 𝑖 = 1, ..., 𝑝 and 𝑗 = 1, ..., 𝑝2.

𝑍𝑘+1
𝑖𝑗 = 1

𝜆(1 − 𝛼) + 𝜌 sign (𝜌Ω𝑘+1
𝑖𝑗 + Λ𝑘

𝑖𝑗) (∣𝜌Ω𝑘+1
𝑖𝑗 + Λ𝑘

𝑖𝑗∣ − 𝜆𝛼)
+

= 1
𝜆(1 − 𝛼) + 𝜌 soft (𝜌Ω𝑘+1

𝑖𝑗 + Λ𝑘
𝑖𝑗, 𝜆𝛼)

(2.6)

3. Update Λ𝑘+1.

Λ𝑘+1 = Λ𝑘 + 𝜌 (Ω𝑘+1 − 𝑍𝑘+1)

2.2.1 Scaled-Form ADMM

Another popular, alternative form of the ADMM algorithm can be used when scaling the dual

variable (Λ𝑘) which we will briefly mention in the context of precision matrix estimation here.

Define 𝑅𝑘 = Ω − 𝑍𝑘 and 𝑈𝑘 = Λ𝑘/𝜌 then

𝑡𝑟 [Λ𝑘 (Ω − 𝑍𝑘)] + 𝜌
2 ∥Ω − 𝑍𝑘∥2

𝐹 = 𝑡𝑟 [Λ𝑘𝑅𝑘] + 𝜌
2 ∥𝑅𝑘∥2

𝐹

= 𝜌
2 ∥𝑅𝑘 + Λ𝑘/𝜌∥2

𝐹 − 𝜌
2 ∥Λ𝑘/𝜌∥2

𝐹

= 𝜌
2 ∥𝑅𝑘 + 𝑈𝑘∥2

𝐹 − 𝜌
2 ∥𝑈𝑘∥2

𝐹

Therefore, a scaled-form ADMM algorithm can now be written as

Ω𝑘+1 = arg min
Ω∈𝕊𝑝

+
{𝑡𝑟 (𝑆Ω) − log |Ω| + 𝜌

2 ∥Ω − 𝑍𝑘 + 𝑈𝑘∥2
𝐹 }

𝑍𝑘+1 = arg min
𝑍∈𝕊𝑝

{𝜆 [1 − 𝛼
2 ‖𝑍‖2

𝐹 + 𝛼 ‖𝑍‖1] + 𝜌
2 ∥Ω𝑘+1 − 𝑍 + 𝑈𝑘∥2

𝐹 }

𝑈𝑘+1 = 𝑈𝑘 + Ω𝑘+1 − 𝑍𝑘+1

(2.7)

2Proof of (2.6) in section A.0.2.
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2.3. SIMULATIONS CHAPTER 2. PRECISION MATRIX ESTIMATION

Note that there are limitations to using this method. Because the dual variable is scaled by 𝜌 (the

step size), this form limits one to using a constant step size for all 𝑘 steps if no further adjustments

are made to 𝑈𝑘.

2.2.2 Stopping Criterion

There are three optimality conditions for the ADMM algorithm that we can use to inform the

convergence and stopping criterion. These general conditions were outlined in Boyd et al. (2011)

but here we cater them to precision matrix estimation. The first condition is the primal optimality

condition Ω𝑘+1−𝑍𝑘+1 = 0 and the other two conditions are the dual conditions 0 ∈ 𝜕𝑓 (Ω𝑘+1)+Λ𝑘+1

and 0 ∈ 𝜕𝑔 (𝑍𝑘+1)−Λ𝑘+1. The first dual optimality condition is a result of taking the sub-differential

of the lagrangian (non-augmented) with respect to Ω𝑘+1 and the second is a result of taking the

sub-differential of the lagrangian with respect to 𝑍𝑘+1. Note that in the first condition we must

honor the symmetric constraint in Ω but the second condition does not require it.

If we define the left-hand side of the primal optimality condition as the primal residual 𝑟𝑘+1 =
Ω𝑘+1 − 𝑍𝑘+1, then at convergence we must require that 𝑟𝑘+1 ≈ 0. Likewise, if we define the dual

residual 𝑠𝑘+1 = 𝜌 (𝑍𝑘+1 − 𝑍𝑘), we must also require that 𝑠𝑘+1 ≈ 0 for proper convergence. This

dual residual is the direct result of the fact that Ω𝑘+1 is the minimizer of the augmented lagragian3

so that 0 ∈ 𝜕𝐿𝑝 (Ω, 𝑍𝑘, Λ𝑘) and consequently 0 ∈ 𝜌 (𝑍𝑘+1 − 𝑍𝑘)4.

Combining these three optimality conditions, Boyd suggests a stopping criterion similar to 𝜖𝑝𝑟𝑖 ≤
∥𝑟𝑘+1∥𝐹 and 𝜖𝑑𝑢𝑎𝑙 ≤ ∥𝑠𝑘+1∥𝐹 where 𝜖𝑟𝑒𝑙 = 𝜖𝑎𝑏𝑠 = 10−3 and

𝜖𝑝𝑟𝑖 = 𝑝𝜖𝑎𝑏𝑠 + 𝜖𝑟𝑒𝑙 max {∥Ω𝑘+1∥𝐹 , ∥𝑍𝑘+1∥𝐹 }

𝜖𝑑𝑢𝑎𝑙 = 𝑝𝜖𝑎𝑏𝑠 + 𝜖𝑟𝑒𝑙 ∥Λ𝑘+1∥𝐹

2.3 Simulations

As a proof-of-concept that the elastic-net penalty in the context of precision matrix estimation can

provide useful results and that the ADMM algorithm used in this process works, this section offers

a short simulation. For the simulation, we generated data from multiple, unique precision matrices
3Proof in section A.0.3.
4Note that the second dual optimality condition 0 ∈ 𝜕𝑔 (𝑍𝑘+1) − Λ𝑘+1 is always satisfied. More details can be

found in section A.0.4.
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with various oracle structures. For each data-generating procedure, the algorithm was run with

a 5-fold cross validation to tune parameters 𝜆 and 𝛼. After 20 replications, the cross validation

errors were totalled and the optimal tuning parameters were selected (results are in the top half of

the figures). These results were then compared with the Kullback Leibler (KL) losses between the

estimated matrices and the oracle matrices (results are in the bottom half of the figures).

The first figure shows the results when the data was generated from a multivariate normal distri-

bution with mean equal to zero and a tri-diagonal oracle precision matrix. This oracle matrix was

first generated as (𝑆𝑖𝑗) = 0.7|𝑖−𝑗| for 𝑖, 𝑗 = 1, ..., 𝑝 and then inverted. The results show that because

the oracle precision matrix is sparse, the algorithm correctly chooses a sparse solution with 𝛼 = 1
- indicating a lasso penalty.

The second figure shows the results when the data was generated from a multivariate normal

distribution with mean equal to zero and a dense oracle precision matrix (non-sparse). Here, we

randomly generated an orthogonal basis, set all eigen values equal to 1000, and then combined the

matrices using QR decomposition. Interestingly, we find that the optimal 𝛼 in this case is 0.6 which

closely matches the optimal result based on the KL loss. This shows that there are cases where an

elastic-net penalty can provide useful results and that using only a lasso penalty may unnecessarily

restrict our penalized estimation.

13
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Figure 2.1: The oracle precision matrices were tri-diagonal with dimension p = 100 and the data
was generated with a sample size of n = 50. The cross validation errors are in the top figure and
the KL losses between the estimated matrices and the oracle matrices are shown in the bottom
figure. The optimal tuning parameter pair for each heatmap was found to be log10(lam) = -0.9
and alpha = 1. Note that brighter areas signify smaller losses.
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Figure 2.2: The oracle precision matrices were dense with dimension p = 100 and the data was
generated with a sample size of n = 50. The cross validation errors are in the top figure and the
KL losses between the estimated matrices and the oracle matrices are shown in the bottom figure.
The optimal tuning parameter pair for the cross validation errors was found to be log10(lam) =
-0.4 and alpha = 0.6 and log10(lam) = -0.5 and alpha = 0.7 for the KL losses. Note that brighter
areas signify smaller losses.
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Chapter 3

SCPME

In their 2017 paper, titled Shrinking Characteristics of Precision Matrix Estimators, Aaron Molstad,

Ph.D. and Professor Adam Rothman outline a framework to shrink a characteristic of a precision

matrix. This concept, inspired by others like Cai and Liu (2011), Fan et al. (2012), and Mai

et al. (2012), exploits the fact that in many predictive models estimation of the precision matrix

is only necessary through its product with another feature, such as a mean vector. The example

they offer in Molstad and Rothman (2017) is in the context of Fisher’s linear discriminant analysis

model. If a response vector 𝑌 is categorical such that 𝑌 can take values in {1, ..., 𝐽}, then the

linear discrimnant analysis model assumes that the predictor matrix 𝑋 conditional on the response

vector 𝑌 is normally distributed:

𝑋|𝑌 = 𝑗 ∼ 𝑁𝑝 (𝜇𝑗, Ω−1) (3.1)

for each 𝑗 = 1, ..., 𝐽 . One can see from this formulation that clearly an estimation of both 𝜇 and Ω
are required for this model. However, they note that if prediction is the primary concern, then for

a given observation 𝑋𝑖 only the characteristic Ω (𝜇𝑙 − 𝜇𝑚) is needed to discern between response

categories 𝑙 and 𝑚. In other words, prediction only requires the characteristic Ω (𝜇𝑙 − 𝜇𝑚) for each

𝑙, 𝑚 ∈ {1, ..., 𝐽} and does not require estimation of the full precision matrix Ω. Cai and Liu (2011)

were among the first authors to propose estimating this characteristic directly but the interesting

facet that distinguishes Molstad and Rothman’s approach is that their framework simultaneously

fits the model in (3.1) and performs variable selection.
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3.1. AUGMENTED ADMM ALGORITHM CHAPTER 3. SCPME

The general framework has applications outside of linear discriminant analysis and we will be

exploring a regression application in later sections, but first we will outline their approach. The

penalty proposed by Molstad and Rothman (2017) is of the form

𝑃 (Ω) = 𝜆 ‖𝐴Ω𝐵 − 𝐶‖1 (3.2)

where 𝐴 ∈ ℝ𝑚×𝑝, 𝐵 ∈ ℝ𝑝×𝑞, and 𝐶 ∈ ℝ𝑚×𝑞 are matrices that are assumed to be known and specified

so that solving the full penalized gaussian negative log-likelihood for Ω results in solving

Ω̂ = arg min
Ω∈𝑆𝑝

+
{𝑡𝑟 (𝑆Ω) − log |Ω| + 𝜆 ‖𝐴Ω𝐵 − 𝐶‖1} (3.3)

A similar estimator was proposed by Dalal and Rajaratnam (2017) when 𝐶 = 0 but here we do not

require it. This form of penalty is particularly useful because it is extremely general. Note that by

letting matrices 𝐴 = 𝐼𝑝, 𝐵 = 𝐼𝑝, and 𝐶 = 0, this penalty reduces to a lasso penalty - but clearly

this form allows for much more creative penalties and 𝐴, 𝐵, and 𝐶 can be constructed so that we

penalize the sum, absolute value of many characteristics of the precision matrix Ω. We will explore

how to solve for Ω̂ in (3.3) in the next section.

3.1 Augmented ADMM Algorithm

Solving for Ω̂ in (3.3) uses what we are going to call an augmented ADMM algorithm. Molstad

and Rothman do not offer a name for this specific algorithm but it leverages the majorize-minimize

principle in one of the steps in the algorithm - augmenting the original ADMM algorithm discussed

in the previous chapter. Within the context of the proposed penalty, the original ADMM algorithm

for precision matrix estimation would consist of iterating over the following three steps:

Ω𝑘+1 = arg min
Ω∈𝕊𝑝

+
𝐿𝜌(Ω, 𝑍𝑘, Λ𝑘)

𝑍𝑘+1 = arg min
𝑍∈ℝ𝑛×𝑟

𝐿𝜌(Ω𝑘+1, 𝑍, Λ𝑘)

Λ𝑘+1 = Λ𝑘 + 𝜌 (𝐴Ω𝑘+1𝐵 − 𝑍𝑘+1 − 𝐶)

(3.4)
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where 𝐿, the augmented lagrangian, is defined as

𝐿𝜌(Ω, 𝑍, Λ) = 𝑓 (Ω) + 𝑔 (𝑍) + 𝑡𝑟 [Λ′ (𝐴Ω𝐵 − 𝑍 − 𝐶)] + 𝜌
2 ‖𝐴Ω𝐵 − 𝑍 − 𝐶‖2

𝐹 (3.5)

Similar to the previous chapter, 𝑓 (Ω) = 𝑡𝑟 (𝑆Ω) − log |Ω| and 𝑔 (𝑍) = 𝜆 ‖𝑍‖1. In fact, the details

of the algorithm thus far are identical to the previous approach except that we are replacing Ω − 𝑍
with 𝐴Ω𝐵 − 𝑍 − 𝐶 in the augmented lagrangian and the dual update Λ𝑘+1.

Instead of solving the first step directly, the authors propose an alternative, approximating objective

function, which we will denote as �̃�, that is based on the majorize-minimize principle1. The purpose

of this approximating function is the desire to solve the first step of the algorithm in closed-form.

The ADMM algorithm with this modification based on majorize-minimize principle is also found

in Lange (2016) but here we define the approximating function as

�̃�𝜌 (Ω, 𝑍𝑘, Λ𝑘) = 𝑓 (Ω) + 𝑔 (𝑍𝑘) + 𝑡𝑟 [(Λ𝑘)′(𝐴Ω𝐵 − 𝑍𝑘 − 𝐶)] + 𝜌
2 ∥𝐴Ω𝐵 − 𝑍𝑘 − 𝐶∥2

𝐹

+ 𝜌
2𝑣𝑒𝑐 (Ω − Ω𝑘)′ 𝑄 (Ω − Ω𝑘)

(3.6)

where 𝑄 = 𝜏𝐼𝑝 − (𝐴′𝐴 ⊗ 𝐵𝐵′) and 𝜏 is chosen such that 𝑄 is positive definite. Note that if 𝑄
is positive definite, then 𝐿𝜌 (⋅) ≤ �̃� (⋅) for all Ω and �̃� is a majorizing function2. The augmented

ADMM algorithm developed by Molstad and Rothman, which now includes the majorize-minimize

principle, consists of the following repeated iterations:

Ω𝑘+1 = arg min
Ω∈𝕊𝑝

+
{𝑡𝑟 [(𝑆 + 𝐺𝑘) Ω] − log |Ω| + 𝜌𝜏

2 ∥Ω − Ω𝑘∥2
𝐹 }

𝑍𝑘+1 = arg min
𝑍∈ℝ𝑛×𝑟

{𝜆 ‖𝑍‖1 + 𝑡𝑟 [(Λ𝑘)′(𝐴Ω𝐵 − 𝑍𝑘 − 𝐶)] + 𝜌
2 ∥𝐴Ω𝐵 − 𝑍𝑘 − 𝐶∥2

𝐹 }

Λ𝑘+1 = Λ𝑘 + 𝜌 (𝐴Ω𝑘+1𝐵 − 𝑍𝑘+1 − 𝐶)

where 𝐺𝑘 = 𝜌𝐴′ (𝐴Ω𝑘𝐵 − 𝑍𝑘 − 𝐶 + 𝜌−1Λ𝑘) 𝐵′. Each step in this algorithm can now conveniently

be solved in closed-form and the full details of each can be found in the appendix A.0.6. The
1Further explanation of the majorizing function (3.6) in section A.0.5
2If 𝑄 is positive definite, then 𝑣𝑒𝑐 (Ω − Ω𝑘)′ 𝜌𝑄 (Ω − Ω𝑘) /2 > 0 since 𝜌 > 0 and 𝑣𝑒𝑐 (Ω − Ω𝑘) is always nonzero

whenever Ω ≠ Ω𝑘.
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following theorem provides the simplified steps in the algorithm.

Theorem 3.1 (Augmented ADMM Algorithm for Shrinking Characteristics of Precision Matrix

Estimators.). Define the soft-thresholding function as soft(𝑎, 𝑏) = sign(𝑎)(|𝑎| − 𝑏)+ and 𝑆 as the

sample covariance matrix. Set 𝑘 = 0 and initialize 𝑍0, Λ0, Ω0, and 𝜌 and repeat steps 1-5 until

convergence.

1. Compute 𝐺𝑘.

𝐺𝑘 = 𝜌𝐴′ (𝐴Ω𝑘𝐵 − 𝑍𝑘 − 𝐶 + 𝜌−1Λ𝑘) 𝐵′

2. Via spectral decomposition, decompose

𝑆 + (𝐺𝑘 + (𝐺𝑘)′) /2 − 𝜌𝜏Ω𝑘 = 𝑉 𝑄𝑉 ′

3. Update Ω𝑘+1.3

Ω𝑘+1 = 𝑉 (−𝑄 + (𝑄2 + 4𝜌𝜏𝐼𝑝)1/2) 𝑉 ′/(2𝜌𝜏) (3.7)

4. Update 𝑍𝑘+1 with element-wise soft-thresholding for the resulting matrix.4

𝑍𝑘+1 = soft (𝐴Ω𝑘+1𝐵 − 𝐶 + 𝜌−1Λ𝑘, 𝜌−1𝜆) (3.8)

5. Update Λ𝑘+1.

Λ𝑘+1 = Λ𝑘 + 𝜌 (𝐴Ω𝑘+1𝐵 − 𝑍𝑘+1 − 𝐶)
3Proof of (3.7) in section A.0.6
4Proof of (3.8) in section A.0.7
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3.1.1 Stopping Criterion

A possibe stopping criterion for this framework is one derived from similar optimality condi-

tions used in the previous chapter in section 2.2.2. The primal optimality condition here is

that 𝐴Ω𝑘+1𝐵 − 𝑍𝑘+1 − 𝐶 = 0 and the two dual optimality conditions are 0 ∈ 𝜕𝑓 (Ω𝑘+1) +
(𝐵(Λ𝑘+1)′𝐴 + 𝐴′Λ𝑘+1𝐵′) /2 and 0 ∈ 𝜕𝑔 (𝑍𝑘+1) − Λ𝑘+1. Similarly, we will define the left-hand

side of the primal optimality condition as the primal residual 𝑟𝑘+1 = 𝐴Ω𝑘+1𝐵 − 𝑍𝑘+1 − 𝐶 and the

dual residual5 as

𝑠𝑘+1 = 𝜌
2 (𝐵(𝑍𝑘+1 − 𝑍𝑘)′𝐴 + 𝐴′(𝑍𝑘+1 − 𝑍𝑘)𝐵′)

For proper convergence, we will require that both residuals are approximately equal to zero. Similar

to the stopping criterion discussed previously, one possibility is to set 𝜖𝑟𝑒𝑙 = 𝜖𝑎𝑏𝑠 = 10−3 and stop

the algorithm when 𝜖𝑝𝑟𝑖 ≤ ∥𝑟𝑘+1∥𝐹 and 𝜖𝑑𝑢𝑎𝑙 ≤ ∥𝑠𝑘+1∥𝐹 where

𝜖𝑝𝑟𝑖 = √𝑛𝑟𝜖𝑎𝑏𝑠 + 𝜖𝑟𝑒𝑙 max {∥𝐴Ω𝑘+1𝐵∥𝐹 , ∥𝑍𝑘+1∥𝐹 , ‖𝐶‖𝐹 }

𝜖𝑑𝑢𝑎𝑙 = 𝑝𝜖𝑎𝑏𝑠 + 𝜖𝑟𝑒𝑙 ∥(𝐵(Λ𝑘+1)′𝐴 + 𝐴′Λ𝑘+1𝐵′) /2∥𝐹

3.2 Regression Illustration

One of the research directions mentioned in Molstad and Rothman (2017) that was not further

explored was the application of the SCPME framework to regression. Utilizing the fact that the

population regression coefficient matrix 𝛽 ≡ Ω𝑥Σ𝑥𝑦 for predictors, 𝑋, and the responses, 𝑌 , they

point out that their framework could allow for the simultaneous estimation of 𝛽 and Ω𝑥. Like Witten

and Tibshirani (2009), this approach would estimate the forward regression coefficient matrix while

using shrinkage estimators for the marginal population precision matrix for the predictors. For

example, recall that the general optimization problem outlined in the SCPME framework is to

estimate Ω̂ such that

Ω̂ = arg min
Ω∈𝕊𝑝

+
{𝑡𝑟(𝑆Ω) − log |Ω| + 𝜆 ‖𝐴Ω𝐵 − 𝐶‖1}

5Proof of (3.9) in section A.0.8.
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If the user specifies that 𝐴 = 𝐼𝑝, 𝐵 = Σ𝑥𝑦, 𝐶 = 0, and Ω𝑥 is the precision matrix for the predictors,

then the optimization problem of interest is now

Ω̂𝑥 = arg min
Ω𝑥∈𝕊𝑝

+
{𝑡𝑟(𝑆𝑥Ω𝑥) − log |Ω𝑥| + 𝜆 ∥Ω𝑥Σ𝑥𝑦∥1}

Specifically, this optimization problem has the effect of deriving an estimate of Ω𝑥 while

assuming sparsity in the forward regression coefficient 𝛽. Of course, in practice we do not

know the true covariance matrix Σ𝑥𝑦 but we might consider using the sample estimate

Σ̂𝑥𝑦 = ∑𝑛
𝑖=1 (𝑋𝑖 − �̄�) (𝑌𝑖 − ̄𝑌 )′ /𝑛 in place of Σ𝑥𝑦. We could then use our estimator, Ω̂𝑥, to

construct the estimated forward regression coefficient matrix ̂𝛽 = Ω̂𝑥Σ̂𝑥𝑦. Estimators such as

these are truly novel an can conveniently be estimated by the SCPME framework. Another such

estimator that is a product of this new framework is one where we construct 𝐴 and 𝐶 similarly

but take 𝐵 = [Σ𝑥𝑦, 𝐼𝑝] so that the identity matrix is appended to the cross-covariance matrix of 𝑋
and 𝑌 . In this case, not only are we assuming that 𝛽 is sparse, but we are also assuming sparsity

in Ω.

𝑃𝜆 (Ω) = 𝜆 ‖𝐴Ω𝐵 − 𝐶‖1 = 𝜆 ∥Ω [Σ𝑥𝑦, 𝐼𝑝]∥1 = 𝜆 ‖𝛽‖1 + 𝜆 ‖Ω‖1

Like before, we could use Σ̂𝑥𝑦 as a replacement and take our resulting estimator, Ω̂𝑥, to construct

the estimated forward regression coefficient matrix ̂𝛽 = Ω̂𝑥Σ̂𝑥𝑦. The embedded assumptions here

are that not all predictors in 𝑋 are useful in predicting the response, 𝑌 , and that a number of

the predictors are conditionally independent of one another. These are assumptions that are quite

reasonable in practice and in the next section we offer a short simulation comparing these new

estimators to related and competing prediction methods.

3.3 Simulations

In this simulation, we compare, under various data realizations, the performance of several com-

peting regression prediction methods including the new so-called SCPME regression estimators

discussed in the previous section. In total, we consider the following:

• OLS = ordinary least squares estimatior. In high dimensional settings (𝑝 >> 𝑛), the Moore-
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Penrose estimator is used as a replacement.

• ridge = ridge regression estimator.

• lasso = lasso regression estimator.

• oracleB = oracle estimator for 𝛽.

• oracleO = regression estimator with oracle Ω∗
𝑥 (let 𝛽 = Ω∗

𝑥Σ̂𝑥𝑦).

• oracleS = regression estimator with oracle Σ∗
𝑥𝑦 (let 𝛽 = Ω̂𝑥Σ∗

𝑥𝑦) and Ω𝑥 is estimated using

an elastic-net penalty.

• shrinkB = SCPME regression estimator with penalty 𝜆 ∥Ω𝑥Σ̂𝑥𝑦∥
1

so that 𝛽 = Ω̂𝑥Σ̂𝑥𝑦.

• shrinkBS = SCPME regression estimator with oracle Σ∗
𝑥𝑦 so that the penalty is 𝜆 ∥Ω𝑥Σ∗

𝑥𝑦∥1
and we let 𝛽 = Ω̂𝑥Σ∗

𝑥𝑦.

• shrinkBO = SCPME regression estimator with penalty 𝜆 ∥Ω𝑥[Σ̂𝑥𝑦, 𝐼𝑝]∥
1

so that 𝛽 = Ω̂𝑥Σ̂𝑥𝑦.

• glasso = graphical lasso estimator with penalty 𝜆 ‖Ω𝑥‖1 so that 𝛽 = Ω̂𝑥Σ̂𝑥𝑦.

For each estimator, if selection of a tuning parameter is required, the tuning parameter was chosen

so that the mean squared prediction error (MSPE) was minimized over 3-fold cross validation.

The data generating procedure for the simulations is the following. The oracle regression coefficient

matrix 𝛽∗ was constructed so that 𝛽∗ = 𝔹 ∘ 𝕍 where 𝑣𝑒𝑐 (𝔹) ∼ 𝑁𝑝𝑟 (0, 𝐼𝑝 ⊗ 𝐼𝑟/√𝑝) and 𝕍 ∈ ℝ𝑝×𝑟

is a matrix containing 𝑝 times 𝑟 random bernoulli draws with 50% probability being equal to one.

The covariance matrices Σ𝑦|𝑥 and Σ𝑥 were constructed so that (Σ𝑦|𝑥)
𝑖𝑗

= 0.7|𝑖−𝑗| and (Σ𝑥)𝑖𝑗 =
0.7|𝑖−𝑗|, respectively. This ensures that their corresponding precision matrices will be tridiagonal

and sparse. Then for 100 independent, identically distributed samples, we had 𝑋𝑖 ∼ 𝑁𝑝 (0, Σ𝑥)
and 𝐸𝑖 ∼ 𝑁𝑟 (0, Σ𝑦|𝑥) so that 𝕐 = 𝕏𝛽 + 𝔼 where 𝕏 ∈ ℝ𝑛×𝑝 and 𝕐 ∈ ℝ𝑛×𝑟 are the matrices with

stacked rows 𝑋𝑖 and 𝐸𝑖, respectively, for 𝑖 = 1, ..., 𝑛 and the script notation denotes the fact that

the columns have been centered so as to remove the intercept in our prediction models. A sample

of an additional 1000 observations was generated similarly for the testing set. Each prediction

method was evaluated on both model error and mean squared prediction error.

Figure 3.1 displays the model error for each method by dimension of the predictor matrix. Here we

took the sample size equal to 𝑛 = 100 and the response matrix dimension 𝑟 = 10 with each data
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generating procedure replicated a total of 20 times. Note OLS and oracleS are not shown due to

extremely poor performance. We find that in high dimensional settings, shrinkBO and shrinkB

perform increasingly well relative to the others as the predictor dimension increases. shrinkBO per-

formed the best. Interestingly, when 𝑛 > 𝑝 shrinkBO is still one of the best-performing estimators

- though worse than both lasso and ridge - but the performance of shrinkB decreases drastically

(plot not shown).

In the high dimension setting, the oracle estimators oracleO and oracleS performed worse or

comparable to the OLS estimator. The poor performance of oracleS is likely due to the fact that

the sample estimate of Ω𝑥 is not identifiable when 𝑝 > 𝑛.

The following table shows the average model error for each estimator when 𝑛 = 100, 𝑝 = 150, and

𝑟 = 10.
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Figure 3.1: The oracle precision matrices were tri-diagonal with variable dimension (p) and the data
was generated with sample size n = 100 and response vector dimension r = 10. The model errors
(ME) for each estimator with variable dimension of the predictor matrix are plotted. shrinkBO and
shrinkB were the two best-performing estimators closely follow by the ridge and lasso regression
estimators.
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Table 3.1: Average model error for dimension p = 150.

Model Error SD

oracleB 0.5056 0.5122

shrinkBO 2.341 1.014

shrinkB 2.419 1.083

ridge 2.479 1.128

lasso 2.627 1.27

shrinkBS 5.932 4.001

glasso 7.57 5.412

oracleO 13.18 10.11

OLS 14.41 11.24

oracleS 52.07 44.62

3.3.1 Regression Simulations with Covariance Shrinkage

This final simulation was explored due to the fact that each of the SCPME regression estimators

require an estimation of the cross-covariance matrix. In the previous simulations, we naively used

the maximum likelihood estimate. However, because the data-generating procedure constructs

settings that are inherently sparse, we were interested to determine if additional shrinkage of the

maximum likelihood estimate for the cross-covariance matrix would also prove beneficial. For

instance, in a number of settings, we were finding that the estimator oracleO was performing

worse than oracleS. This perhaps suggests that estimating the covariance matrix Σ𝑥𝑦 well is more

important than estimating Ω well. This simulation explores that theory a bit further.

The data-generating procedure for this simulation is similar to previous one but here we take

𝑛 = 100, 𝑝 = 200, 𝑟 = 10, and, in addition, we multiply the population cross-covariance estimator

by a factor of 𝑘 where 𝑘 ∈ (0.1, 0.2, ..., 0.9, 1). Figure 3.2 plots the MSPE for shrinkB for each

tuning parameter, 𝜆, and constant, 𝑘, pair. Figure 3.3 plots the MSPE similarly for shrinkBO.

Interestingly, we find that in this high dimension setting, it does appear that shrinking the sample

covariance matrix by a constant factor helps the overall prediction performance of the SCPME

estimators. This is indicated by the fact that the optimal constant, 𝑘, hovers between 0.3 and 0.6
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for each of the estimators. We also performed a simulation in low dimensions (not shown) but we

did not see the same benefit.

−2

0

2

0.25 0.50 0.75 1.00

const

lo
g1

0(
la

m
)

shrinkB Covariance Shrinkage

**Optimal: log10(lam) = −1, const = 0.6

Figure 3.2: The oracle precision matrices were tri-diagonal with dimension p = 200 and the data
was generated with a sample size n = 100 and response vector dimension r = 10. The cross
validation MSPE are plotted for each lambda and constant tuning parameter pair. The optimal
tuning parameter pair was found to be log10(lam) = -1 and const = 0.6. Note that brighter areas
signify smaller losses.
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−2
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lo
g1
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m
)

shrinkBO Covariance Shrinkage

**Optimal: log10(lam) = −0.5, const = 0.3

Figure 3.3: The oracle precision matrices were tri-diagonal with dimension p = 200 and the data
was generated with a sample size n = 100 and response vector dimension r = 10. The cross
validation MSPE are plotted for each lambda and constant tuning parameter pair. The optimal
tuning parameter pair was found to be log10(lam) = -0.5 and const = 0.3. Note that brighter areas
signify smaller losses.
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3.4 Discussion

Apart from the two SCPME estimators discussed in the previous section, the generality of the

SCPME framework allows for many previously unconceptualized precision matrix estimators to be

explored. One estimator that was concieved of in our work but deserves further attention in future

research is of the form

Ω̂𝑥 = arg min
Ω𝑥∈𝕊𝑝

+
{𝑡𝑟(𝑆𝑥Ω𝑥) − log |Ω𝑥| + 𝜆

2 ∥𝕏Ω𝑥Σ𝑥𝑦 − 𝕐∥2
𝐹 }

For clarity in regards to the SCPME framework, 𝐴 = 𝕏, 𝐵 = Σ𝑥𝑦, and 𝐶 = 𝕐. As before, 𝕏 is the

𝑛 × 𝑝 matrix with rows 𝑋𝑖 ∈ ℝ𝑝 for 𝑖 = 1, ..., 𝑛 and the script notation denotes that the matrix

has been column-centered. The matrix 𝕐 is a similar representation for the observed responses

𝑌𝑖 ∈ ℝ𝑟. Also note that here we are using the Frobenius norm instead of the matrix 𝑙1-norm

but this replacement requires only a slight modification of the augmented ADMM algorithm for

optimization - details of which will be presented later.

This optimization problem estimates a precision matrix that balances minimizing the gaussian neg-

ative log-likelihood for Ω𝑥 with minimizing the squared prediction error for the forward regression

model. In other words, the objective function aims to penalize estimates, determined by 𝜆, that

too heavily favor maximizing the marginal likelihood for 𝑋 over the predictive performance of the

conditional model 𝑌 given 𝑋. This estimator also reveals an interesting connection to the joint

log-likelihood of the two random variables. To see this, let us suppose that we have 𝑛 independent

copies of the random pair (𝑌𝑖, 𝑋𝑖) and we assume a linear relationship such that

𝑌𝑖 = 𝜇𝑦 + 𝛽′ (𝑋𝑖 − 𝜇𝑥) + 𝐸𝑖 (3.9)

where 𝐸𝑖 ∼ 𝑁𝑟 (0, Ω−1
𝑦|𝑥) and 𝑋𝑖 ∼ 𝑁𝑝 (𝜇𝑥, Ω−1

𝑥 ). This implies that the conditional distribution of

𝑌𝑖|𝑋𝑖 is of the form

𝑌𝑖|𝑋𝑖 ∼ 𝑁𝑟 (𝜇𝑦 + 𝛽′ (𝑋𝑖 − 𝜇𝑥) , Ω−1
𝑦|𝑥) (3.10)

We can use this conditional distribution along with the marginal distribution of 𝑋 to derive the

joint log-likelihood of 𝑋 and 𝑌 . Recall that 𝛽 ≡ Ω𝑥Σ𝑥𝑦 and 𝑆𝑥 is the marginal sample covariance
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matrix of 𝑋. Without loss of generality, we will assume here that 𝜇𝑥 = 𝜇𝑦 = 0.

𝑙 (Ω𝑦|𝑥, Ω𝑥, Σ𝑥𝑦|𝑌 , 𝑋) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑛
2 log ∣Ω𝑦|𝑥∣ − 1

2
𝑛

∑
𝑖=1

𝑡𝑟 [(𝑌𝑖 − Σ′
𝑥𝑦Ω𝑥𝑋𝑖) (𝑌𝑖 − Σ′

𝑥𝑦Ω𝑥𝑋𝑖)
′ Ω𝑦|𝑥]

+ 𝑛
2 log |Ω| − 1

2
𝑛

∑
𝑖=1

𝑡𝑟 (𝑋𝑖𝑋′
𝑖Ω𝑥)

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑛
2 log ∣Ω𝑦|𝑥∣ − 1

2𝑡𝑟 [(𝕐 − 𝕏Ω𝑥Σ𝑥𝑦)′ (𝕐 − 𝕏Ω𝑥Σ𝑥𝑦) Ω𝑦|𝑥]

+ 𝑛
2 log |Ω𝑥| − 𝑛

2 𝑡𝑟 (𝑆𝑥Ω𝑥)

Optimizing this joint log-likelihood with respect to Ω𝑥 reveals strong similiarities to the estimator

that was derived from the SCPME framework:

Ω̂𝑥 = arg min
Ω𝑥∈𝕊𝑝

+
{1

2𝑡𝑟 [(𝕐 − 𝕏Ω𝑥Σ𝑥𝑦)′ (𝕐 − 𝕏Ω𝑥Σ𝑥𝑦) Ω𝑦|𝑥] + 𝑛
2 𝑡𝑟 (𝑆𝑥Ω𝑥) − 𝑛

2 log |Ω𝑥|}

= arg min
Ω𝑥∈𝕊𝑝

+
{𝑡𝑟 (𝑆𝑥Ω𝑥) − log |Ω𝑥| + 1

𝑛 ∥(𝕏Ω𝑥Σ𝑥𝑦 − 𝕐) Ω1/2
𝑦|𝑥 ∥

2

𝐹
}

If it is the case that, given 𝑋, each of the 𝑟 responses are pairwise independent with equal variance

so that Ω1/2
𝑦|𝑥 = 𝜎𝑦|𝑥𝐼𝑟 and we let 𝜆 = 2𝜎2

𝑦|𝑥/𝑛, then we have that

Ω̂𝑥 = arg min
Ω𝑥∈𝕊𝑝

+
{𝑡𝑟 (𝑆𝑥Ω𝑥) − log |Ω𝑥| + 𝜆

2 ∥𝕏Ω𝑥Σ𝑥𝑦 − 𝕐∥2
𝐹 }

This is exactly the estimator conceived of previously. Of course, throughout this derivation there

were several assumptions that were made and in practice we do not know the true values of neither

Ω𝑦|𝑥 nor Σ𝑥𝑦. However, we can see that this estimator is solving a very similar problem to that of

optimizing the joint log-likelihood with respect to Ω𝑥. We think this estimator and related ones

deserve attention in future work.

The algorithm for solving this optimization problem is below. Note that no closed-form solution

exists and so we must resort to some iterative algorithm similar to the SCPME augmented ADMM

algorithm6. The only difference here is that in step four we no longer require elementwise soft-
6Proof in section A.0.9.
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thresholding.

Theorem 3.2 (Modified Augmented ADMM Algorithm for Shrinking Characteristics of Precision

Matrix Estimators with Frobenius Norm). Set 𝑘 = 0 and initialize 𝑍0, Λ0, Ω0, and 𝜌 and repeat

steps 1-5 until convergence.

1. Compute 𝐺𝑘 = 𝜌𝐴′ (𝐴Ω𝑘𝐵 − 𝑍𝑘 − 𝐶 + 𝜌−1Λ𝑘) 𝐵′

2. Decompose 𝑆 + (𝐺𝑘 + (𝐺𝑘)′) /2 − 𝜌𝜏Ω𝑘 = 𝑉 𝑄𝑉 ′ (via the spectral decomposition).

3. Set Ω𝑘+1 = 𝑉 (−𝑄 + (𝑄2 + 4𝜌𝜏𝐼𝑝)1/2) 𝑉 ′/(2𝜌𝜏)

4. Set 𝑍𝑘+1 = [𝜌 (𝐴Ω𝑘+1𝐵 − 𝐶) + Λ𝑘] /(𝜆 + 𝜌)

5. Set Λ𝑘+1 = 𝜌 (𝐴Ω𝑘+1𝐵 − 𝑍𝑘+1 − 𝐶)
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Appendix

A.0.1 Proof of (2.5)

Witten and Tibshirani (2009) and Price et al. (2015) showed that the following optimization problem

can be solved in closed-form. We outline their steps here.

Ω𝑘+1 = arg min
Ω∈𝕊𝑝

+
{𝑡𝑟 (𝑆Ω) − log |Ω| + 𝑡𝑟 [Λ𝑘 (Ω − 𝑍𝑘)] + 𝜌

2 ∥Ω − 𝑍𝑘∥2
𝐹 }

First start by taking the gradient with respect to Ω:

∇Ω {𝑡𝑟 (𝑆Ω) − log |Ω| + 𝑡𝑟 [Λ𝑘 (Ω − 𝑍𝑘)] + 𝜌
2 ∥Ω − 𝑍𝑘∥2

𝐹 }

= 𝑆 − Ω−1 + Λ𝑘 + 𝜌 (Ω − 𝑍𝑘)

Note that because all of the variables are symmetric, we can ignore the symmetric constraint when

deriving the gradient. Next set the gradient equal to zero and decompose Ω𝑘+1 = 𝑉 𝐷𝑉 ′ using

spectral decomposition so that 𝐷 is a diagonal matrix with diagonal elements equal to the eigen

values of Ω𝑘+1 and 𝑉 is the matrix with corresponding eigen vectors as columns so that

𝑆 + Λ𝑘 − 𝜌𝑍𝑘 = (Ω𝑘+1)−1 − 𝜌Ω𝑘+1 = 𝑉 𝐷−1𝑉 ′ − 𝜌𝑉 𝐷𝑉 ′ = 𝑉 (𝐷−1 − 𝜌𝐷) 𝑉 ′

This equivalence implies that
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𝜙𝑗 (𝑆 + Λ𝑘 − 𝜌𝑍𝑘) = 1
𝜙𝑗(Ω𝑘+1) − 𝜌𝜙𝑗(Ω𝑘+1)

where 𝜙𝑗(⋅) is the 𝑗th eigen value.

⇒ 𝜌𝜙2
𝑗 (Ω𝑘+1) + 𝜙𝑗 (𝑆 + Λ𝑘 − 𝜌𝑍𝑘) 𝜙𝑗(Ω𝑘+1) − 1 = 0

⇒ 𝜙𝑗(Ω𝑘+1) =
−𝜙𝑗(𝑆 + Λ𝑘 − 𝜌𝑍𝑘) ± √𝜙2

𝑗 (𝑆 + Λ𝑘 − 𝜌𝑍𝑘) + 4𝜌
2𝜌

In summary, if we decompose 𝑆 + Λ𝑘 − 𝜌𝑍𝑘 = 𝑉 𝑄𝑉 ′ then

Ω𝑘+1 = 1
2𝜌𝑉 [−𝑄 + (𝑄2 + 4𝜌𝐼𝑝)1/2] 𝑉 ′ (A.1)

A.0.2 Proof of (2.6)

Solve the optimization problem

𝑍𝑘+1 = arg min
𝑍∈𝕊𝑝

{𝜆 [1 − 𝛼
2 ‖𝑍‖2

𝐹 + 𝛼 ‖𝑍‖1] + 𝑡𝑟 [Λ𝑘 (Ω𝑘+1 − 𝑍)] + 𝜌
2 ∥Ω𝑘+1 − 𝑍∥2

𝐹 }

Start by taking the subgradient with respect to 𝑍:

𝜕 {𝜆 [1 − 𝛼
2 ‖𝑍‖2

𝐹 + 𝛼 ‖𝑍‖1] + 𝑡𝑟 [Λ𝑘 (Ω𝑘+1 − 𝑍)] + 𝜌
2 ∥Ω𝑘+1 − 𝑍∥2

𝐹 }

= 𝜕 {𝜆 [1 − 𝛼
2 ‖𝑍‖2

𝐹 + 𝛼 ‖𝑍‖1]} + ∇Ω {𝑡𝑟 [Λ𝑘 (Ω𝑘+1 − 𝑍)] + 𝜌
2 ∥Ω𝑘+1 − 𝑍∥2

𝐹 }

= 𝜆(1 − 𝛼)𝑍 + sign(𝑍)𝜆𝛼 − Λ𝑘 − 𝜌 (Ω𝑘+1 − 𝑍)

where sign is the elementwise sign operator. By setting the gradient/sub-differential equal to zero,

we have that

𝑍𝑘+1
𝑖𝑗 = 1

𝜆(1 − 𝛼) + 𝜌 (𝜌Ω𝑘+1
𝑖𝑗 + Λ𝑘

𝑖𝑗 − sign(𝑍𝑘+1
𝑖𝑗 )𝜆𝛼)
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for all 𝑖 = 1, ..., 𝑝 and 𝑗 = 1, ..., 𝑝. We observe two scenarios:

• If 𝑍𝑘+1
𝑖𝑗 > 0 then

𝜌Ω𝑘+1
𝑖𝑗 + Λ𝑘

𝑖𝑗 > 𝜆𝛼

• If 𝑍𝑘+1
𝑖𝑗 < 0 then

𝜌Ω𝑘+1
𝑖𝑗 + Λ𝑘

𝑖𝑗 < −𝜆𝛼

This implies that sign(𝑍𝑖𝑗) = sign(𝜌Ω𝑘+1
𝑖𝑗 + Λ𝑘

𝑖𝑗). Putting all the pieces together, we arrive at

𝑍𝑘+1
𝑖𝑗 = 1

𝜆(1 − 𝛼) + 𝜌 sign (𝜌Ω𝑘+1
𝑖𝑗 + Λ𝑘

𝑖𝑗) (∣𝜌Ω𝑘+1
𝑖𝑗 + Λ𝑘

𝑖𝑗∣ − 𝜆𝛼)
+

= 1
𝜆(1 − 𝛼) + 𝜌 soft (𝜌Ω𝑘+1

𝑖𝑗 + Λ𝑘
𝑖𝑗, 𝜆𝛼)

where soft is the soft-thresholding function.

A.0.3 Proof of the dual residual

Here we want to show that 0 ∈ 𝜌 (𝑍𝑘+1 − 𝑍𝑘) which is a direct result of the fact that Ω𝑘+1 is the

minimizer of the augmented lagrangian and 0 ∈ 𝑓 (Ω𝑘+1) + Λ𝑘+1.

0 ∈ 𝜕 {𝑓 (Ω𝑘+1) + 𝑡𝑟 [Λ𝑘 (Ω𝑘+1 − 𝑍𝑘)] + 𝜌
2 ∥Ω𝑘+1 − 𝑍𝑘∥2

𝐹 }

= 𝜕𝑓 (Ω𝑘+1) + Λ𝑘 + 𝜌 (Ω𝑘+1 − 𝑍𝑘)

= 𝜕𝑓 (Ω𝑘+1) + Λ𝑘 + 𝜌 (Ω𝑘+1 + 𝑍𝑘+1 − 𝑍𝑘+1 − 𝑍𝑘)

= 𝜕𝑓 (Ω𝑘+1) + Λ𝑘 + 𝜌 (Ω𝑘+1 − 𝑍𝑘+1) + 𝜌 (𝑍𝑘+1 − 𝑍𝑘)

= 𝜕𝑓 (Ω𝑘+1) + Λ𝑘+1 + 𝜌 (𝑍𝑘+1 − 𝑍𝑘)

⇒ 0 ∈ 𝜌 (𝑍𝑘+1 − 𝑍𝑘)
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A.0.4 Proof of second dual optimality condition

Here we use the primal optimality condition Ω𝑘+1 − 𝑍𝑘+1 = 0 to show that the second dual

optimality condition 0 ∈ 𝜕𝑔 (𝑍𝑘+1) − Λ𝑘+1 is always satisfied.

0 ∈ 𝜕 {𝑔 (𝑍𝑘+1) + 𝑡𝑟 [Λ𝑘 (Ω𝑘+1 − 𝑍𝑘+1)] + 𝜌 ∥Ω𝑘+1 − 𝑍𝑘+1∥2
𝐹 }

= 𝜕𝑔 (𝑍𝑘+1) − Λ𝑘 − 𝜌 (Ω𝑘+1 − 𝑍𝑘+1)

= 𝜕𝑔 (𝑍𝑘+1) − Λ𝑘+1

A.0.5 Explanation of majorizing function (3.6)

To see why this particular function was used, consider the Taylor’s expansion of 𝜌 ∥𝐴Ω𝐵 − 𝑍𝑘 − 𝐶∥2
𝐹 /2:

𝜌
2 ∥𝐴Ω𝐵 − 𝑍𝑘 − 𝐶∥2

𝐹 ≈ 𝜌
2 ∥𝐴Ω𝑘𝐵 − 𝑍𝑘 − 𝐶∥2

𝐹

+ 𝜌
2𝑣𝑒𝑐 (Ω − Ω𝑘)′ (𝐴′𝐴 ⊗ 𝐵𝐵′) 𝑣𝑒𝑐 (Ω − Ω𝑘)

+ 𝜌𝑣𝑒𝑐 (Ω − Ω𝑘)′ 𝑣𝑒𝑐 (𝐵𝐵′Ω𝑘𝐴′𝐴 − 𝐵(𝑍𝑘)′𝐴 − 𝐵𝐶′𝐴)

Note that the gradient and hessian, respectively, are

∇Ω {𝜌
2 ‖𝐴Ω𝐵 − 𝑍 − 𝐶‖2

𝐹 } = 𝜌𝐵𝐵′Ω𝐴′𝐴 − 𝜌𝐵𝑍′𝐴 − 𝜌𝐵𝐶′𝐴

∇2
Ω {𝜌

2 ‖𝐴Ω𝐵 − 𝑍 − 𝐶‖2
𝐹 } = 𝜌 (𝐴′𝐴 ⊗ 𝐵𝐵′)

This implies that
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𝜌
2 ∥𝐴Ω𝐵 − 𝑍𝑘 − 𝐶∥2

𝐹 + 𝜌
2𝑣𝑒𝑐 (Ω − Ω𝑘)′ 𝑄 (Ω − Ω𝑘)

≈ 𝜌
2 ∥𝐴Ω𝑘𝐵 − 𝑍𝑘 − 𝐶∥2

𝐹 + 𝜌
2𝑣𝑒𝑐 (Ω − Ω𝑘)′ 𝑄 (Ω − Ω𝑘)

+ 𝜌
2𝑣𝑒𝑐 (Ω − Ω𝑘)′ (𝐴′𝐴 ⊗ 𝐵𝐵′) 𝑣𝑒𝑐 (Ω − Ω𝑘)

+ 𝜌𝑣𝑒𝑐 (Ω − Ω𝑘)′ 𝑣𝑒𝑐 (𝐵𝐵′Ω𝑘𝐴′𝐴 − 𝐵(𝑍𝑘)′𝐴 − 𝐵𝐶′𝐴)

= 𝜌
2 ∥𝐴Ω𝑘𝐵 − 𝑍𝑘 − 𝐶∥2

𝐹 + 𝜌𝜏
2 ∥Ω − Ω𝑘∥2

𝐹

+ 𝜌𝑡𝑟 [(Ω − Ω𝑘) (𝐵𝐵′Ω𝑘𝐴′𝐴 − 𝐵(𝑍𝑘)′𝐴 − 𝐵𝐶′𝐴)]

Let us now plug in this equality into our optimization problem that includes the augmented la-

grangian:

Ω̂𝑘+1 = arg min
Ω∈𝕊𝑝

+
�̃�𝜌(Ω, 𝑍𝑘, Λ𝑘)

= arg min
Ω∈𝕊𝑝

+
{𝑡𝑟 (𝑆Ω) − log |Ω| + 𝑡𝑟 [(Λ𝑘)′(𝐴Ω𝐵 − 𝑍𝑘 − 𝐶)] + 𝜌 ∥𝐴Ω𝐵 − 𝑍𝑘 − 𝐶∥2

𝐹 /2

+ 𝑣𝑒𝑐 (Ω − Ω𝑘)′ 𝜌𝑄 (Ω − Ω𝑘) /2}

= arg min
Ω∈𝕊𝑝

+
{𝑡𝑟 (𝑆Ω) − log |Ω| + 𝑡𝑟 [(Λ𝑘)′(𝐴Ω𝐵 − 𝑍𝑘 − 𝐶)] + 𝜌 ∥𝐴Ω𝑘𝐵 − 𝑍𝑘 − 𝐶∥2

𝐹 /2

+ 𝜌𝜏 ∥Ω − Ω𝑘∥2
𝐹 /2 + 𝑡𝑟 [𝜌 (Ω − Ω𝑘) (𝐵𝐵′Ω𝑘𝐴′𝐴 − 𝐵(𝑍𝑘)′𝐴 − 𝐵𝐶′𝐴)]}

= arg min
Ω∈𝕊𝑝

+
{𝑡𝑟 [(𝑆 + 𝜌𝐴′(𝐴Ω𝑘𝐵 − 𝑍𝑘 − 𝐶 + Λ𝑘/𝜌)𝐵′) Ω]

− log |Ω| + 𝜌𝜏 ∥Ω − Ω𝑘∥2
𝐹 /2}

= arg min
Ω∈𝕊𝑝

+
{𝑡𝑟 [(𝑆 + 𝐺𝑘) Ω] − log |Ω| + 𝜌𝜏 ∥Ω − Ω𝑘∥2

𝐹 /2}

where 𝐺𝑘 = 𝜌𝐴′(𝐴Ω𝑘𝐵 − 𝑍𝑘 − 𝐶 + Λ𝑘/𝜌)𝐵′.

A.0.6 Proof of (3.7)

We show that the following optimization problem can be solved in closed-form similar to (A.1).

Ω𝑘+1 = arg min
Ω∈𝕊𝑝

+
{𝑡𝑟 [(𝑆 + 𝐺𝑘) Ω] − log |Ω| + 𝜌𝜏

2 ∥Ω − Ω𝑘∥2
𝐹 }
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First start by taking the gradient with respect to Ω:

∇Ω {𝑡𝑟 [(𝑆 + 𝐺𝑘) Ω] − log |Ω| + 𝜌𝜏
2 ∥Ω − Ω𝑘∥2

𝐹 }

= 2𝑆 − 𝑆 ∘ 𝐼𝑝 + 𝐺𝑘 + (𝐺𝑘)′ − 𝐺𝑘 ∘ 𝐼𝑝 − 2Ω−1 + Ω−1 ∘ 𝐼𝑝

+ 𝜌𝜏
2 [2Ω − 2(Ω𝑘)′ + 2Ω′ − 2Ω𝑘 − 2(Ω − Ω𝑘)′ ∘ 𝐼𝑝]

Note that we need to honor the symmetric constraint given by Ω. By setting the gradient equal to

zero and multiplying all off-diagonal elements by 1/2, this simplifies to

𝑆 + 1
2 (𝐺𝑘 + (𝐺𝑘)′) − 𝜌𝜏Ω𝑘 = (Ω𝑘+1)−1 − 𝜌𝜏Ω𝑘+1

We can then decompose using spectral decomposition Ω𝑘+1 = 𝑉 𝐷𝑉 ′ where 𝐷 is a diagonal matrix

with diagonal elements equal to the eigen values of Ω𝑘+1 and 𝑉 is the matrix with corresponding

eigen vectors as columns.

𝑆 + 1
2 (𝐺𝑘 + (𝐺𝑘)′) − 𝜌𝜏Ω𝑘 = 𝑉 𝐷−1𝑉 ′ − 𝜌𝜏𝑉 𝐷𝑉 ′ = 𝑉 (𝐷−1 − 𝜌𝜏𝐷) 𝑉 ′

This equivalence implies that

𝜙𝑗 (𝐷𝑘) = 1
𝜙𝑗(Ω𝑘+1) − 𝜌𝜏𝜙𝑗(Ω𝑘+1)

where 𝜙𝑗(⋅) is the 𝑗th eigen value and 𝐷𝑘 = 𝑆 + (𝐺𝑘 + (𝐺𝑘)′) /2 − 𝜌𝜏Ω𝑘. Therefore

⇒ 𝜌𝜏𝜙2
𝑗 (Ω𝑘+1) + 𝜙𝑗 (𝐷𝑘) 𝜙𝑗(Ω𝑘+1) − 1 = 0

⇒ 𝜙𝑗(Ω𝑘+1) =
−𝜙𝑗(𝐷𝑘) ± √𝜙2

𝑗 (𝐷𝑘) + 4𝜌𝜏
2𝜌𝜏

In summary, if we decompose 𝑆 + (𝐺𝑘 + (𝐺𝑘)′) /2 − 𝜌𝜏Ω𝑘 = 𝑉 𝑄𝑉 ′ then

Ω𝑘+1 = 1
2𝜌𝜏 𝑉 [−𝑄 + (𝑄2 + 4𝜌𝜏𝐼𝑝)1/2] 𝑉 ′
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A.0.7 Proof of (3.8)

Solve the optimization problem

𝑍𝑘+1 = arg min
𝑍∈ℝ𝑛×𝑟

{𝜆 ‖𝑍‖1 + 𝑡𝑟 [(Λ𝑘)′ (𝐴Ω𝑘+1𝐵 − 𝑍 − 𝐶)] + 𝜌
2 ∥𝐴Ω𝑘+1𝐵 − 𝑍 − 𝐶∥2

𝐹 }

Start by taking the subgradient with respect to 𝑍:

𝜕 {𝜆 ‖𝑍‖1 + 𝑡𝑟 [(Λ𝑘)′ (𝐴Ω𝑘+1𝐵 − 𝑍 − 𝐶)] + 𝜌
2 ∥𝐴Ω𝑘+1𝐵 − 𝑍 − 𝐶∥2

𝐹 }

= 𝜕 {𝜆 ‖𝑍‖1} + ∇Ω {𝑡𝑟 [(Λ𝑘)′ (𝐴Ω𝑘+1𝐵 − 𝑍 − 𝐶)] + 𝜌
2 ∥𝐴Ω𝑘+1𝐵 − 𝑍 − 𝐶∥2

𝐹 }

= sign(𝑍)𝜆 − Λ𝑘 − 𝜌 (𝐴Ω𝑘+1𝐵 − 𝑍 − 𝐶)

where sign(Z) is the elementwise sign operator. By setting the gradient/sub-differential equal to

zero, we arrive at the following equivalence:

𝑍𝑘+1
𝑖𝑗 = 1

𝜌 (𝜌 (𝐴Ω𝑘+1
𝑖𝑗 𝐵 − 𝐶) + Λ𝑘

𝑖𝑗 − 𝑆𝑖𝑔𝑛 (𝑍𝑘+1
𝑖𝑗 ) 𝜆)

for all 𝑖 = 1, ..., 𝑝 and 𝑗 = 1, ..., 𝑝. We observe two scenarios:

• If 𝑍𝑘+1
𝑖𝑗 > 0 then

𝜌 (𝐴Ω𝑘+1
𝑖𝑗 𝐵 − 𝐶) + Λ𝑘

𝑖𝑗 > 𝜆𝛼

• If 𝑍𝑘+1
𝑖𝑗 < 0 then

𝜌 (𝐴Ω𝑘+1
𝑖𝑗 𝐵 − 𝐶) + Λ𝑘

𝑖𝑗 < −𝜆𝛼

This implies that sign (𝑍𝑘+1
𝑖𝑗 ) = sign (𝜌 (𝐴Ω𝑘+1

𝑖𝑗 𝐵 − 𝐶) + Λ𝑘
𝑖𝑗). Putting all the pieces together, we

arrive at

36



APPENDIX A. APPENDIX

𝑍𝑘+1
𝑖𝑗 = 1

𝜌 sign (𝜌 (𝐴Ω𝑘+1
𝑖𝑗 𝐵 − 𝐶) + Λ𝑘

𝑖𝑗) (∣𝜌 (𝐴Ω𝑘+1
𝑖𝑗 𝐵 − 𝐶) + Λ𝑘

𝑖𝑗∣ − 𝜆)
+

= 1
𝜌 soft (𝜌 (𝐴Ω𝑘+1

𝑖𝑗 𝐵 − 𝐶) + Λ𝑘
𝑖𝑗, 𝜆)

where soft is the soft-thresholding function.

A.0.8 Proof of (3.9)

Here we want to show that 0 ∈ 𝜌 (𝐵(𝑍𝑘+1 − 𝑍𝑘)′𝐴 + 𝐴′(𝑍𝑘+1 − 𝑍𝑘)𝐵′) /2 which is a direct result

of the fact that 0 ∈ 𝜕𝑓 (Ω𝑘+1) + (𝐵(Λ𝑘+1)′𝐴 + 𝐴′Λ𝑘+1𝐵′) /2.

0 ∈ 𝜕 {𝑓 (Ω𝑘+1) + 𝑡𝑟 [Λ𝑘 (𝐴Ω𝑘+1𝐵 − 𝑍𝑘 − 𝐶)] + 𝜌 ∥𝐴Ω𝑘+1𝐵 − 𝑍𝑘 − 𝐶∥2
𝐹 /2}

= 𝜕𝑓 (Ω𝑘+1) + (𝐵(Λ𝑘)′𝐴 + 𝐴′Λ𝑘𝐵′) /2 + 𝜌 (𝐵𝐵′Ω𝑘+1𝐴′𝐴 + 𝐴′𝐴Ω𝑘+1𝐵𝐵′) /2

− 𝜌 (𝐴′(𝑍𝑘 + 𝐶)𝐵′ + 𝐵(𝑍𝑘 + 𝐶)′𝐴) /2

= 𝜕𝑓 (Ω𝑘+1) + (𝐵(Λ𝑘)′𝐴 + 𝐴′Λ𝑘𝐵′) /2

+ 𝜌 (𝐵(𝐵′Ω𝑘+1𝐴′ − (𝑍𝑘)′ − 𝐶′)𝐴 + 𝐴′(𝐴Ω𝑘+1𝐵 − 𝑍𝑘 − 𝐶)𝐵′) /2

= 𝜕𝑓 (Ω𝑘+1) + (𝐵(Λ𝑘)′𝐴 + 𝐴′Λ𝑘𝐵′) /2 + 𝜌 (𝐴′(𝐴Ω𝑘+1𝐵 − 𝑍𝑘+1 + 𝑍𝑘+1 − 𝑍𝑘 − 𝐶)𝐵′) /2

+ 𝜌 (𝐵(𝐵′Ω𝑘+1𝐴′ − (𝑍𝑘+1)′ + (𝑍𝑘+1)′ − (𝑍𝑘)′ − 𝐶′)𝐴) /2

= 𝜕𝑓 (Ω𝑘+1) + [𝐵 ((Λ𝑘)′ + 𝜌(𝐵′Ω𝑘+1𝐴′ − (𝑍𝑘+1)′ − 𝐶′)) 𝐴] /2

+ [𝐴′ (Λ𝑘 + 𝜌(𝐴Ω𝑘+1𝐵 − 𝑍𝑘+1 − 𝑐)𝐵) 𝐵′] /2 + 𝜌 (𝐵(𝑍𝑘+1 − 𝑍𝑘)′𝐴 + 𝐴′(𝑍𝑘+1 − 𝑍𝑘)𝐵′) /2

= 𝜕𝑓 (Ω𝑘+1) + (𝐵(Λ𝑘+1)′𝐴 + 𝐴′Λ𝑘+1𝐵′) /2 + 𝜌 (𝐵(𝑍𝑘+1 − 𝑍𝑘)′𝐴 + 𝐴′(𝑍𝑘+1 − 𝑍𝑘)𝐵′) /2

⇒ 0 ∈ 𝜌 (𝐵(𝑍𝑘+1 − 𝑍𝑘)′𝐴 + 𝐴′(𝑍𝑘+1 − 𝑍𝑘)𝐵′) /2

A.0.9 Proof of no closed-form solution

Here we want to show that the following optimization problem cannot be solved in closed-form.

Ω̂ = arg min
Ω∈𝕊𝑝

+
{𝑡𝑟 (𝑆Ω) − log |Ω| + 𝜆

2 ∥𝕏ΩΣ𝑥𝑦 − 𝕐∥2
𝐹 }
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First start by taking the gradient with respect to Ω:

∇Ω {𝑡𝑟 (𝑆Ω) − log |Ω| + 𝜆
2 ∥𝕏ΩΣ𝑥𝑦 − 𝕐∥2

𝐹 }

= ∇Ω {𝑡𝑟 (𝑆Ω) − log |Ω| + 𝜆
2 𝑡𝑟 [(𝕏ΩΣ𝑥𝑦 − 𝕐)′ (𝕏ΩΣ𝑥𝑦 − 𝕐)]}

= ∇Ω {𝑡𝑟 (𝑆Ω) − log |Ω| + 𝜆
2 𝑡𝑟 (Ω𝕏′𝕏ΩΣ𝑥𝑦Σ′

𝑥𝑦 − 2ΩΣ𝑥𝑦𝕐′𝕏)}

= 2𝑆 − 𝑆 ∘ 𝐼𝑝 − 2Ω−1 + Ω−1 ∘ 𝐼𝑝 + 𝜆𝕏′𝕏ΩΣ𝑥𝑦Σ′
𝑥𝑦 + 𝜆Σ𝑥𝑦Σ′

𝑥𝑦Ω𝕏′𝕏

− 𝜆𝕏′𝕏ΩΣ𝑥𝑦Σ′
𝑥𝑦 ∘ 𝐼𝑝 − Σ𝑥𝑦𝕐′𝕏 − 𝕏′𝕐Σ𝑥𝑦 + Σ𝑥𝑦𝕐′𝕏 ∘ 𝐼𝑃

⇒ 0 = 𝑆 − Ω̂−1 + 𝜆
2 (𝕏′𝕏Ω̂Σ𝑥𝑦Σ′

𝑥𝑦 + Σ𝑥𝑦Σ′
𝑥𝑦Ω̂𝕏′𝕏) − 𝜆Σ𝑥𝑦𝕐′𝕏

Note that we cannot isolate Ω̂.
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ADMMsigma R Package

ADMMsigma is an R package that estimates a penalized precision matrix, often denoted Ω, via the

alternating direction method of multipliers (ADMM) algorithm. Though not the fastest estimation

method, the ADMM algorithm is easily adaptable and allows for rapid experimentation by the

user, which is the primary goal of this package.

The package currently supports a general elastic-net penalty that allows for both ridge and lasso-

type penalties as special cases. In particular, the algorithm solves the following optimization

problem:

Ω̂ = arg min
Ω∈𝑆𝑝

+
{𝑡𝑟(𝑆Ω) − log det (Ω) + 𝜆 [1 − 𝛼

2 ‖Ω‖2
𝐹 + 𝛼 ‖Ω‖1]}

where 𝜆 > 0, 0 ≤ 𝛼 ≤ 1 are tuning parameters, ‖⋅‖2
𝐹 is the Frobenius norm, and we define

‖𝐴‖1 = ∑𝑖,𝑗 ∣𝐴𝑖𝑗∣.

A list of functions contained in the package can be found below:

• ADMMsigma() computes the estimated precision matrix via the ADMM algorithm (ridge, lasso,

and elastic-net regularization optional)

• RIDGEsigma() computes the estimated ridge penalized precision matrix via closed-form solu-

tion

• plot.ADMMsigma() produces a heat map or optional line graph for cross validation errors
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• plot.RIDGEsigma() produces a heat map or optional line graph for cross validation errors

B.1 Installation

# The easiest way to install is from CRAN

install.packages("ADMMsigma")

# You can also install the development version from GitHub:

# install.packages('devtools')

devtools::install_github("MGallow/ADMMsigma")

This package is hosted on Github at github.com/MGallow/ADMMsigma. The project website is

located at mattxgalloway.com/ADMMsigma.

B.2 Tutorial

By default, ADMMsigma will estimate a penalized precision matrix, Ω, using the elastic-net penalty

and choose the optimal 𝜆 and 𝛼 tuning parameters. The primary function is simply ADMMsigma().

The input value 𝑋 is an 𝑛×𝑝 data matrix so that there are 𝑛 rows each representing an observation

and 𝑝 columns each representing a unique feauture or variable.

Here, we will use a 100 × 5 data matrix that is generated from a multivariate normal distribution

with mean zero and tapered oracle covariance matrix 𝑆. A tapered covariance matrix has an

inverse - or precision matrix - that is tri-diagonal, which is useful for illustration purposes because

the object is sparse (many zero entries) and the shrinkage penalty should prove useful.

# elastic-net type penalty (set tolerance to 1e-8)

ADMMsigma(X, tol.abs = 1e-08, tol.rel = 1e-08)

##

## Call: ADMMsigma(X = X, tol.abs = 1e-08, tol.rel = 1e-08)
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##

## Iterations: 48

##

## Tuning parameters:

## log10(lam) alpha

## [1,] -1.599 1

##

## Log-likelihood: -108.41003

##

## Omega:

## [,1] [,2] [,3] [,4] [,5]

## [1,] 2.15283 -1.26902 0.00000 0.00000 0.19765

## [2,] -1.26902 2.79032 -1.32206 -0.08056 0.00925

## [3,] 0.00000 -1.32206 2.85470 -1.17072 -0.00865

## [4,] 0.00000 -0.08056 -1.17072 2.49554 -1.18959

## [5,] 0.19765 0.00925 -0.00865 -1.18959 1.88121

We can see that the optimal 𝛼 value selected is one. This selection corresponds with a lasso penalty

– a special case of the elastic-net penalty.

We can also explicitly assume sparsity in our estimate rather than let the package decide by

restricting the class of penalties to the lasso. We do this by simply setting alpha = 1 in our

function:

# lasso penalty (default tolerance)

ADMMsigma(X, alpha = 1)

##

## Call: ADMMsigma(X = X, alpha = 1)

##

## Iterations: 24

##
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## Tuning parameters:

## log10(lam) alpha

## [1,] -1.599 1

##

## Log-likelihood: -108.41193

##

## Omega:

## [,1] [,2] [,3] [,4] [,5]

## [1,] 2.15308 -1.26962 0.00000 0.00000 0.19733

## [2,] -1.26962 2.79103 -1.32199 -0.08135 0.00978

## [3,] 0.00000 -1.32199 2.85361 -1.16953 -0.00921

## [4,] 0.00000 -0.08135 -1.16953 2.49459 -1.18914

## [5,] 0.19733 0.00978 -0.00921 -1.18914 1.88096

ADMMsigma also has the capability to provide plots for the cross validation errors. This allows

the user to analyze and manually select the appropriate tuning parameters. In the heatmap plot

below, the bright, white areas of the heat map correspond to a better tuning parameter selection

(low validation error). In the line graph, each line corresponds to a different 𝛼 tuning parameter.

# produce CV heat map for ADMMsigma

ADMM = ADMMsigma(X, tol.abs = 1e-08, tol.rel = 1e-08)

plot(ADMM, type = "heatmap")

# produce line graph for CV errors for ADMMsigma

plot(ADMM, type = "line")

ADMMsigma has a number of more advanced options such as cross validation criteria, regulariza-

tion path, and parallel CV that are explained in more detail on the project website at mattxgal-

loway.com/ADMMsigma.
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Figure B.1: CV heatmap for ADMMsigma tutorial.
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Figure B.2: CV line graph for ADMMsigma tutorial.
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SCPME R Package

SCPME is an R package that estimates a penalized precision matrix via a modified alternating

direction method of multipliers (ADMM) algorithm as described in Molstad and Rothman (2017).

Specifically, the modified ADMM algorithm solves the following optimization problem:

Ω̂ = arg min
Ω∈𝑆𝑝

+
{𝑡𝑟 (𝑆Ω) − log det (Ω) + 𝜆 ‖𝐴Ω𝐵 − 𝐶‖1}

where 𝜆 > 0 is a tuning parameter, 𝐴, 𝐵, and 𝐶 are known, user-specified matrices, and we define

‖𝐴‖1 = ∑𝑖,𝑗 ∣𝐴𝑖𝑗∣.

This form of penalty leads to many new, interesting, and novel estimators for the precision matrix

Ω. Users can construct matrices 𝐴, 𝐵, and 𝐶 so that emphasis is placed on the sum, absolute value

of a characteristic of Ω. We will explore a few of these estimators in the tutorial section.

A list of functions contained in the package can be found below:

• shrink() computes the estimated precision matrix

• data_gen() data generation function (for convenience)

• plot.shrink() produces a heat map or optional line graph for the cross validation errors
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C.1 Installation

# The easiest way to install is from CRAN

install.packages("SCPME")

# You can also install the development version from GitHub:

# install.packages('devtools')

devtools::install_github("MGallow/SCPME")

This package is hosted on Github at github.com/MGallow/SCPME. The project website is located

at mattxgalloway.com/SCPME.

C.2 Tutorial

The primary function in the SCPME package is shrink(). The input values 𝑋 is an 𝑛 × 𝑝 data

matrix so that there are 𝑛 rows each representing an observation and 𝑝 columns each representing

a unique variable and 𝑌 is an 𝑛 × 𝑟 response matrix where 𝑟 is the dimension of the response

vector. By default, SCPME will estimate Ω using a lasso penalty (𝐴 = 𝐼𝑝, 𝐵 = 𝐼𝑝, and 𝐶 = 0) and

choose the optimal 𝜆 tuning parameter that minimizes the mean squared prediction error for the

regression of the variable 𝑌 on 𝑋 (here 𝐼𝑝 denotes a 𝑝-dimension identity matrix). If 𝑌 is not

provided, then tuning parameter selection will be based on the validation likelihood. Note that Ω
(perhaps better denoted here as Ω𝑥) will only have meaningful shrinkage unless the data vector

𝑋 ∈ ℝ𝕡 is multi-dimensional (𝑝 > 1).

In this example, the data matrix is 100×5 and the response is generated according to the following

model:

𝑌𝑖 = 𝛽′𝑋𝑖 + 𝐸𝑖

where 𝐸𝑖 ∼ 𝑁 (0, 1) and 𝑋𝑖 is generated from a multivariate normal distribution with mean zero

and tapered oracle covariance matrix 𝑆. A tapered covariance matrix has the property that its
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inverse - the precision matrix - is tri-diagonal. Estimating this oracle precision matrix well and

efficiently will be our primary interest. In addition, 𝛽 is randomly generated and sparse. The data

will be generated using the data_gen() function contained in the package.

library(SCPME)

set.seed(123)

# generate 100 x 5 X data matrix and 100 x 1 Y data matrix

data = data_gen(p = 5, n = 100, r = 1)

# the oracle regression coefficients are sparse

data$betas

## [,1]

## [1,] -0.25065233

## [2,] 0.00000000

## [3,] 0.69707555

## [4,] 0.03153231

## [5,] 0.00000000

# shrink sum absolute entries in omega

shrink(X = data$X, Y = data$Y)

##

## Call: shrink(X = data$X, Y = data$Y)

##

## Iterations: 37

##

## Tuning parameters:

## log10(lam) lam

## [1,] -1.163 0.069
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##

## Log-likelihood: -178.20154

##

## Omega:

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1.60847 -0.73553 -0.14094 -0.04329 -0.11730

## [2,] -0.73553 1.66045 -0.52579 -0.03576 -0.03342

## [3,] -0.14094 -0.52579 1.73410 -0.85121 -0.07332

## [4,] -0.04329 -0.03576 -0.85121 2.02541 -0.93612

## [5,] -0.11730 -0.03342 -0.07332 -0.93612 1.62397

Notice here that the estimated precision matrix is not sparse. This is due to the fact that our cross

validation criteria is the mean-squared prediction error. We can estimate a new precision matrix

using the validation likelihood as the cross validation criteria with the following command:

# shrink sum absolute entries in omega

shrink(X = data$X, Y = data$Y, crit.cv = "loglik")

##

## Call: shrink(X = data$X, Y = data$Y, crit.cv = "loglik")

##

## Iterations: 51

##

## Tuning parameters:

## log10(lam) lam

## [1,] -2.163 0.007

##

## Log-likelihood: -120.02858

##

## Omega:

## [,1] [,2] [,3] [,4] [,5]
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## [1,] 2.11926 -1.17294 -0.13784 -0.00678 -0.20014

## [2,] -1.17294 2.28420 -0.81629 0.00009 -0.00001

## [3,] -0.13784 -0.81629 2.45520 -1.42117 0.01650

## [4,] -0.00678 0.00009 -1.42117 3.09526 -1.56839

## [5,] -0.20014 -0.00001 0.01650 -1.56839 2.24703

All of the estimators so far have used a lasso penalty that penalizes the sum of the absolute value

of all the entries in Ω (𝐴 = 𝐼𝑝, 𝐵 = 𝐼𝑝, and 𝐶 = 0). In effect, this penalty embeds an assumption

in our estimate that the true population precision matrix, Ω, is sparse. The flexibility of the

penalty described in Molstad and Rothman (2017) allows us to make other assumptions as well.

For instance, in the penalty we could set 𝐴 = 𝐼𝑝, 𝐵 = Σ𝑥𝑦 where Σ𝑥𝑦 is the covariance matrix of

𝑋 and 𝑌 , and 𝐶 = 0. In which case our penalty function

𝑃𝜆 (Ω) = 𝜆 ‖𝐴Ω𝐵 − 𝐶‖1 = 𝜆 ∥ΩΣ𝑥𝑦∥1 = 𝜆 ‖𝛽‖1

This objective function estimates an Ω via the marginal log-likelihood of 𝑋 under the assumption

that the forward regression coefficient 𝛽 is sparse (recall that 𝛽 ≡ ΩΣ𝑥𝑦). Of course, in practice,

we do not know the true covariance matrix Σ𝑥𝑦 but we might consider using the sample estimate

Σ̂𝑥𝑦 = ∑𝑛
𝑖=1 (𝑋𝑖 − �̄�) (𝑌𝑖 − ̄𝑌 )′ /𝑛.

# assume sparsity in beta

lam_max = max(abs(crossprod(data$X, data$Y)))

(shrink = shrink(X = data$X, Y = data$Y, B = cov(data$X, data$Y),

lam.max = lam_max, nlam = 20))

##

## Call: shrink(X = data$X, Y = data$Y, B = cov(data$X, data$Y), nlam = 20,

## lam.max = lam_max)

##

## Iterations: 84

##
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## Tuning parameters:

## log10(lam) lam

## [1,] -0.167 0.681

##

## Log-likelihood: -133.98097

##

## Omega:

## [,1] [,2] [,3] [,4] [,5]

## [1,] 2.12467 -1.20016 -0.01149 0.01660 -0.20424

## [2,] -1.20016 2.28202 -0.70370 0.03047 -0.01211

## [3,] -0.01149 -0.70370 2.09284 -1.47505 0.01020

## [4,] 0.01660 0.03047 -1.47505 2.86829 -1.45784

## [5,] -0.20424 -0.01211 0.01020 -1.45784 2.18752

Note that we specified the maximum lam value in the previous function to expand the tuning

parameter grid. With these settings, the augmented ADMM algorithm also solves for the estimated

𝛽 coefficient matrix simultaneously:

# print estimated beta matrix

shrink$Z

## [,1]

## [1,] 0.00000000

## [2,] 0.00000000

## [3,] 0.42221120

## [4,] 0.04782093

## [5,] 0.00000000

Another possible penalty is to set 𝐵 = [Σ𝑥𝑦, 𝐼𝑝] so that the identity matrix is appended to the

covariance matrix of 𝑋 and 𝑌 . That is, the penalty 𝑃 , is constructed as

𝑃𝜆 (Ω) = 𝜆 ‖𝐴Ω𝐵 − 𝐶‖1 = 𝜆 ∥Ω [Σ𝑥𝑦, 𝐼𝑝]∥1 = 𝜆 ‖𝛽‖1 + 𝜆 ‖Ω‖1
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In this case, we are equally penalizing the sum, absolute values of entries in 𝛽 and Ω which embeds

an assumption that 𝛽 and Ω are both sparse.

# assume sparsity in beta AND omega

(shrink = shrink(X = data$X, Y = data$Y, B = cbind(cov(data$X,

data$Y), diag(ncol(data$X))), lam.max = 10, lam.min.ratio = 1e-04,

nlam = 20))

##

## Call: shrink(X = data$X, Y = data$Y, B = cbind(cov(data$X, data$Y),

## diag(ncol(data$X))), nlam = 20, lam.max = 10, lam.min.ratio = 1e-04)

##

## Iterations: 46

##

## Tuning parameters:

## log10(lam) lam

## [1,] 0.368 2.336

##

## Log-likelihood: -624.54758

##

## Omega:

## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.26376 -0.00003 -0.00015 -0.00010 -0.00005

## [2,] -0.00003 0.24002 -0.00017 -0.00012 -0.00006

## [3,] -0.00015 -0.00017 0.19066 -0.00516 -0.00020

## [4,] -0.00010 -0.00012 -0.00516 0.20362 -0.00014

## [5,] -0.00005 -0.00006 -0.00020 -0.00014 0.22750

# print estimated beta

shrink$Z[, 1, drop = FALSE]

## [,1]
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## [1,] 0.06389361

## [2,] 0.08542992

## [3,] 0.14200713

## [4,] 0.12357129

## [5,] 0.09958374

SCPME also has the capability to provide plots (heatmaps and line graphs) for the cross validation

errors. In the heatmap plot below, the more bright, white areas correspond to a better tuning

parameter selection (lower cross validation error).

# produce CV heat map

plot(shrink, type = "heatmap")
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**Optimal: log10(lam) = 0.368

Figure C.1: CV heatmap for SCPME tutorial

# produce line graph

plot(shrink, type = "line")
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Figure C.2: CV line graph for SCPME tutorial

SCPME has a number of more advanced options including alternative convergence criteria and parallel

CV that are explained in detail on the project website at mattxgalloway.com/SCPME.
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