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Abstract

Fluctuation in mortgage default rates provides vital information to financial institutions and

is a key indicator of the state of the economy. Using a decade’s worth (2002–2010) of data

on prime and subprime mortgage portfolios, we propose and compare two models for mortgage

defaults. The first, the Weibull-Gamma segmentation model (WGS), was utilized by Fader and

Hardie (2007) in forecasting customer retention. Though effective in that setting, Markov chain

Monte Carlo simulations suggest that the WGS suffers from over-parameterization. The Weibull

segmentation model (WS) provides a simplified alternative that accurately forecasts default

rates while identifying latent classes of “risky” prime and subprime mortgages characterized by

increased hazard rates.

Keywords: mortgage default, time-to-default, mixture model, latent class, Bayesian esti-

mation.

1 Introduction

Mortgage defaults played a critical role in the 2007–2010 financial crisis. Often referred to as the

“subprime mortgage crisis,” this period saw an overwhelming number of defaults in the subprime

sector of the mortgage market. Accordingly, subprime lending practices have received great at-

tention in the literature. For example, Das and Stein (2009) discuss the impact of underwriting

standards and Demyanyk and Van Hemert (2011) explore potential economical and institutional

causes. Crucial to these conversations is an understanding of the inherent risk in subprime lending.

Here we propose and compare two Bayesian models of time-to-default (TD) for a mortgage portfo-

lio: an infinite mixture Weibull-Gamma segmentation model (WGS) and a finite mixture Weibull

segmentation model (WS). The WGS formally addresses two key considerations in mortgage de-

faults: (1) potential heterogeneity in default rates among mortgage holders; and (2) the existence

of latent mortgage market classes with differing temporal risk patterns. For example, there may

exist two latent classes of mortgage holders, one for which hazard rates increase with time and the

other for which hazard rates decrease. The WS is a simplification of the WGS which addresses
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(2) while assuming a common default rate among mortgage holders. Similar strategies have been

utilized to model heterogeneous survival data in various other contexts (see, for example, Marin

et al. (2005), Erisoglu et al. (2011), and Soyer and Xu (2010)). In fact, the WGS and WS are

extensions of the models proposed by Fader and Hardie (2007), Hardie et al. (1998), and Fader

et al. (2003) for addressing population heterogeneity of customer retention in subscription settings.

Specification of the WGS and WS requires the estimation of corresponding model parameters,

θ. The convention in financial and marketing applications is to approximate θ via maximum

likelihood estimation. This frequentist approach assumes a fixed θ and ignores practitioners’ prior

understanding of θ compiled from subject-matter expertise and experience. We present a Bayesian

alternative that evaluates θ through a weighted combination of observed data and prior knowledge.

Though not standard, Bayesian applications in survival analysis settings are increasingly popular

(see Chen et al. (1985) and Kiefer (2006, 2008)). For example, a Bayesian reliability model for

mortgage default risk is suggested in Soyer and Xu (2010) and a Bayesian state space model is

discussed in Aktekin et al. (2013). Most relevant to our exploration of default rates is the work of

Popova et al. (2008) that conducts a Bayesian analysis of loan prepayment.

Our development of the WGS and WS is motivated by our receipt of data from a major American

commercial bank (as reported to Federal Financial Institution Examination Council). These data

include the monthly number of defaults in prime and subprime mortgage portfolios pooled over

several cohorts, ie. vintages. In this particular setting, our results suggest that the simpler WS

is superior to the WGS in modeling TD. Mainly, while these results support the segmentation of

mortgages into two latent classes, heterogeneity among default rates appears to be insignificant.

The paper is organized as follows. In Section 2 we provide relevant background information on the

provided mortgage data and the foundational Weibull-Gamma time-to-default model. We specify

our Bayesian WGS and WS models in Section 3 and apply these to the provided mortgage data in

Section 4.

2 Background

2.1 Mortgage Default Data

A major American bank provided the authors with data on the aggregated prime and subprime

portfolios of residential mortgages on the U.S. market in 2002–2010. Included for the prime and

subprime portfolios separately, was an indication of the total number of mortgages m and the

monthly counts of defaults k = (k1, k2, ..., k90) pooled over several vintages. From k we calculated

times-to-default for all m mortgage holders, (t1, t2, ..., tm), discretized to month. Given the finite

period of observation (90 months), the majority of the ti are right-censored. These data are

summarized in Figure 1. The inherent risk of subprime vs prime mortgage lending is clear.

2



Figure 1: Proportion of mortgage holders that defaulted in each of the first 90 months of the
holding.

2.2 The Weibull-Gamma Model

Our goal is to construct time-to-default models from which to predict long-term losses of the

prime and subprime portfolios. In using pooled data, these models integrate out potential macro-

economic factors. Thus they provide a characterization of the bank’s underwriting practices rather

than specific economic circumstances. For vintage-specific analysis see Glennon and Nigro (2011)

and Aktekin et al. (2013) which emphasizes the short-term role of covariates.

Let T denote the time-to-default for a mortgage holder in a given portfolio. A simple model for T

can be derived from the discrete-time Beta-Geometric (BG) model for customer retention proposed

by Fader and Hardie (2007):

T |θ ∼ Geo(θ)

θ ∼ Beta(a, b)

In the context of mortgage defaults, the BG model assumes the following:

(A1) Defaults are observed at discrete periods, i.e. T ∈ {1, 2, 3, . . .}.

(A2) The probability of default for an individual mortgage holder, θ, remains constant throughout

their holding. Thus T |θ ∼ Geo(θ) with distribution function

FBG(t|θ) = Pr(T ≤ t|θ) = 1− (1− θ)t for t ∈ {1, 2, ...} .

(A3) Variability of θ among mortgage holders can be characterized by θ ∼ Beta(a, b) with proba-

bility density function f(θ|a, b) ∝ θa−1(1− θ)b−1 for θ ∈ [0, 1].

Note that the BG is an infinite mixture of Geometric distributions, with parameter θ characterizing
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the random retention pattern of an individual mortgage holder. Thus the BG addresses potential

population heterogeneity in default rates. Yet the BG assumptions oversimplify the reality of our

setting. To begin, T is typically continuous, i.e. defaults can occur at any time. More importantly,

depending on the circumstances of the mortgage portfolio and its holder, the hazard rate of default

may increase or decrease throughout the duration of the holding. To accommodate these features,

Fader and Hardie (2007) propose, but do not explore, a continuous-time Weibull-Gamma (WG)

model:

T |λ, c ∼Weibull(λ, c)

λ ∼ Gamma(r, α)
(1)

Specifically, the WG assumes the following:

(B1) Defaults can occur at any time, i.e. T ≥ 0.

(B2) The risk of default for an individual may increase or decrease throughout their holding.

Thus T can be characterized by T |λ, c ∼ Weibull(λ, c) with probability density function

f(t|λ, c) ∝ tc−1e−λtc and distribution function

F (t|λ, c) = Pr(T ≤ t|λ, c) = 1− e−λtc for t ≥ 0 .

The default risk factor of an individual mortgage holder, λ > 0, captures the scale of the

Weibull with larger λ reflecting a higher overall risk of default. Further, shape parameter

c > 0 reflects the magnitude and direction of the hazard rate (risk of default) over time.

Specifically, c = 1 indicates a constant hazard rate and c > 1 (c < 1) indicates an increasing

(decreasing) hazard rate.

(B3) The risk of default varies among mortgage holders. To this end, heterogeneity in λ is modeled

by λ ∼ Gamma(r, α) distribution with probability density function f(λ|r, α) ∝ λr−1e−αλ for

λ > 0.

It follows that the joint Weibull-Gamma distribution of (T, λ) is characterized by density function

fWG(t, λ|c, r, α) = f(t|λ, c)f(λ|r, α) .

Thus integrating out λ produces a form of the Burr Type XII distribution:

FWG(t|c, r, α) =

∫ t

0

∫ ∞
0

fWG(z, λ|c, r, α)dλdz = 1−
(

α

α+ tc

)r
.
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3 Latent Class Segmentation Models

3.1 Finite Mixtures

The WG framework under assumptions (B1)–(B3) provides a foundation for modeling time-to-

default, yet it does not address the potential existence of mortgage market classes with differing

temporal risk patterns. In reality, it is reasonable to assume that the mortgage population could

be separated into two or more “segments” with differing hazard rates, some that increase over time

and others that decrease. Since the segment membership of any given mortgage holder is unknown,

these segments form latent classes.

Here we assume the existence of two latent mortgage classes, though our methodology can be

extended to accommodate any number of classes. To this end, let p ∈ (0, 1) be the segmentation

weight for the first class of mortgages with shape parameter c1, and 1 − p be the weight for the

second class of mortgages with shape c2. Then we assume that times-to-default (T1, T2, ..., Tm)

follow a mixture Weibull distribution

Ti|λ, c1, c2, p
ind∼ pWeibull(λ, c1) + (1− p)Weibull(λ, c2) (2)

with probability density function and distribution function

fWS(ti|λ, c1, c2, p) = pλc1t
c1−1
i e−λt

c1
i + (1− p)aλc2tc2−1i e−λt

c2
i

FWS(ti|λ, c1, c2, p) = 1− pe−λt
c1
i − (1− p)e−λt

c2
i

Recall that the observed times-to-default t = (t1, t2, ..., tm) are discretized by month and kj denotes

number of defaults in month j ∈ {1, . . . , L}. The majority of mortgage holders did not default

in the L = 90 month period, thus are right censored. To this end, let δ = (δ1, δ2, . . . , δm) be

indicators of right-censorship (1 if censored and 0 otherwise) and note that the total number of

right-censored mortgages is
∑m

i=1 δi = m−
∑L

j=1 kj . Thus a common technique in survival analysis

of time-to-event data is to rewrite the probability density function to reflect right-censoring:

f̃WS(ti|λ, c1, c2, p) = fWS(ti|λ, c1, c2, p)1−δi (1− FWS(L|λ, c1, c2, p))δi .
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The likelihood function of (λ, c1, c2, p) follows:

LWS(λ, c1, c2, p | t) =
m∏
i=1

f̃WS(ti|λ, c1, c2, p)

=
m∏
i=1

fWS(ti|λ, c1, c2, p)1−δi ·
m∏
i=1

(1− FWS(L|λ, c1, c2, p))δi

=

 L∏
j=1

f
kj
WS(j|λ, c1, c2, p)

 (1− FWS(L|λ, c1, c2, p))m−
∑L

j=1 kj .

(3)

Note that the final line is a consequence of the discretization of time-to-default to months.

In finance and marketing applications, the convention is to estimate (λ, c1, c2, p) via maximum

likelihood:

(λ̂, ĉ1, ĉ2, p̂) = argmaxλ,c1,c2,pLWS(λ, c1, c2, p | t) .

In contrast, we propose two Bayesian alternatives corresponding to the Weibull segmentation (WS)

and Weibull-Gamma segmentation (WGS) time-to-default models.

3.2 The Weibull Segmentation Model

The mixture Weibull distribution (2) provides the foundation of the WS Bayesian time-to-default

model. Specifically, for mortgages i ∈ {1, ....,m}, the WS assumes

Ti|λ, c1, c2, p
ind∼ pWeibull(λ, c1) + (1− p)Weibull(λ, c2)

with independent priors

λ ∼ Gamma(0.00001, 0.00001)

ci ∼ Gamma(0.00001, 0.00001) for i ∈ {1, 2}

p ∼ Beta(0.5, 0.5) .

We have chosen non-informative priors here, but these could be modified to incorporate subject-

matter expertise in future iterations. Letting f(λ), f(c1), f(c2), f(p) denote the corresponding prior

probability density functions and for likelihood LWS defined by (3), the posterior distribution of

(λ, c1, c2, p) given data t is characterized by probability density function

fWSpost(λ, c1, c2, p|t) ∝ LWS(λ, c1, c2, p | t)f(λ)f(c1)f(c2)f(p) .

6



3.3 The Weibull-Gamma Segmentation Model

The WS model assumes homogeneity in λ, ie. that default rates are constant across mortgage

holders. The WGS relaxes this assumption, utilizing assumption (B3) of the WG model (1):

Ti|λ, c1, c2, p
ind∼ pWeibull(λ, c1) + (1− p)Weibull(λ, c2)

λ|r, α ∼ Gamma(r, α)

ci ∼ Gamma(0.00001, 0.00001) for i ∈ {1, 2}

p ∼ Beta(0.5, 0.5)

r ∼ InvGamma(0.000000001, 0.000000001)

α ∼ InvGamma(0.000000001, 0.000000001) .

The corresponding posterior distribution of (λ, c1, c2, p, r, α) given data t is characterized by prob-

ability density function

f(λ, c1, c2, p, r, α|t) ∝ LWS(λ, c1, c2, p | t)f(λ|r, α)f(c1)f(c2)f(p)f(r)f(α) . (4)

To obtain the marginal posterior of (c1, c2, p, r, α) given t we can integrate out λ:

fWGSpost(c1, c2, p, r, α|t) =

∫ ∞
0

f(λ, c1, c2, p, r, α|t)dλ .

∝ LWGS(c1, c2, p, r, α | t)f(c1)f(c2)f(p)f(r)f(α)

where

LWGS(c1, c2, p, r, α | t) =

L∏
j=1

f
kj
WGS(j|c1, c2, p, r, α)(1− FWGS(L|c1, c2, p, r, α))m−

∑L
j=1 kj (5)

for

fWGS(t|c1, c2, p, r, α) =

∫ ∞
0

fWS(t|λ, c1, c2, p)f(λ|r, α)dλ

FWGS(t|c1, c2, p, r, α) =

∫ t

0
fWGS(z|c1, c2, p, r, α)dz = 1− p

(
α

α+ tc1

)r
− (1− p)

(
α

α+ tc2

)r
.

4 Application to Default Data

4.1 Parameter Estimation

Fitting the WS and WGS to the provided time-to-default data for prime and subprime portfolios

(separately) requires estimation of the corresponding model parameters. Let fpost(θ|t) denote a
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generic posterior probability density function of parameters θ. For example, the WS and WGS have

fWSpost(λ, c1, c2, p|t) and fWGSpost(c1, c2, p, r, α|t), respectively. The posterior expectation provides

a point estimate of θ:

E [θ|t] =

∫
θfpost(θ|t)dθ .

Yet when fpost(·) is analytically intractable, as is the case for the WS and WGS, finding a closed

form solution to the posterior expectation is prohibitively difficult if not impossible. Thus posterior

inference for θ requires MCMC techniques. Define Markov chain Φ =
{
θ(0), θ(1), . . . , θ(N)

}
for

fpost(θ|t). Monte Carlo averages calculated from the Markov chain output provide estimates of the

posterior expectations:

θN :=
1

N

N∑
i=1

θ(i).

Moreover, the strong law of large numbers guarantees that with probability 1, θN → E [θ|t] as

N →∞.

For each combination of portfolio setting (prime and subprime) and target model (WS and WGS)

we construct a Markov chain Φ of length N = 105 using the rjags (“Just Another Gibbs Sampler”)

package for R (Plummer, 2016). Given the target model, rjags constructs Φ using a combination of

Gibbs sampling, Metropolis-Hastings, adaptive rejection, and slice sampling techniques. For details

on rjags methods see Coro (2017). Note that outside ‘rjags‘ we also constructed alternative Markov

chains using a Metropolis-Hastings random walk strategy. In light of the multivariate structure

of the models, this algorithm proved difficult to tune and resulted in slow mixing Markov chains.

Further, the results were similar to those provided by rjags thus are eliminated here.

4.2 WGS Results

Table 1 summarizes the Monte Carlo average estimates of WGS parameters (c1, c2, p, r, α) for the

prime and subprime portfolios. A discussion is deferred to Section 4.4.

Table 1: Monte Carlo average parameter estimates (with naive standard errors) for the WGS model
of time-to-default for subprime and prime portfolios.

Subprime Portfolio Prime Portfolio
Parameter Estimate Naive standard error Estimate Naive standard error

c1 2.239 1.3 ∗ 10−4 2.434 2.3 ∗ 10−4

c2 0.340 1.3 ∗ 10−4 0.380 1.4 ∗ 10−4

p 0.201 1.3 ∗ 10−5 0.038 6.2 ∗ 10−6

r 443.1 3.9 3241.6 21.6
α 2.481 ∗ 106 2.1 ∗ 104 1.210 ∗ 107 7.6 ∗ 104

The overall fit of the WGS is satisfactory, reasonably capturing the tail behavior of the

mortgage defaults. However, MCMC diagnostics provides insight into certaing problems of
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this model. Trace plots of the Markov chain output from which the prime portfolio parameter

estimates are calculated are shown in Figure 2. Markov chain patterns in the subprime setting

are similar. The trace plots for c1 and p exhibit decent mixing behavior whereas the Markov

chain for c2 mixes slowly. Similar behavior was exhibited across multiple simulations, thus

addressing this issue would require either a different model or more sophisticated Markov

chain algorithm. Finally, consider the trace plots for α and r, the shape and scale parameters

for the Gamma distribution of variability in mortgage risk. These indicate instability, slow

mixing, and dependence across the Markov chain values of α and r. Mainly, the ratio

r/α remains relatively constant. Relative to the prior expected value and variance of λ,

E(λ|r, α) = r/α ' constant and V ar(λ|r, α) = r/α2 ' 0. This Markov chain behavior

reveals potential over-parametrization of the WGS, in turn suggesting the use of the simpler

WS which assumes constant risk factor λ.

Figure 2: Markov chain trace plots corresponding to the WGS of prime portfolios.

4.3 WS Results

Table 2 summarizes the Monte Carlo average estimates of WS parameters (λ, c1, c2, p) for

the prime and subprime portfolios. Figure 3 illustrates the WS at these parameter settings.

These results are discussed and compared to those for the WGS in Section 4.4.
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Table 2: Monte Carlo average parameter estimates (with naive standard errors) for the WS model
of time-to-default for subprime and prime portfolios.

Subprime Portfolio Prime Portfolio
Parameter Estimate Naive standard error Estimate Naive standard error

λ 0.00019 9.8 ∗ 10−8 0.00022 6.5 ∗ 10−5

c1 2.234 1.3 ∗ 10−4 2.457 2.6 ∗ 10−4

c2 0.272 1.2 ∗ 10−4 0.398 2.4 ∗ 10−4

p 0.201 1.3 ∗ 10−5 0.038 6.2 ∗ 10−6

Figure 3: Estimated WS models for subprime and prime portfolios defaults superimposed on the
raw data.

Finally, Figure 4 illustrates Markov chain trace plots corresponding to the WGS of prime

portfolios. As with the WGS Markov chains, we observe decent mixing for (λ, c1, p) yet slow

mixing for c2.
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Figure 4: Markov chain trace plots corresponding to the WS of prime portfolios.

4.4 Discussion

The results above support the modeling of subprime and prime time-to-default via the

Bayesian Weibull segmentation model (WS). In contrast, the over-parametrization of the

WGS suggested by the MCMC simulation is an unexpected result of our study. Mainly,

allowing for heterogeneity in default rates λ across mortgage holders does not appear to be

necessary.

The parameter estimates themselves also offer unique insight into time-to-default patterns.

Comparing Tables 1 and 2 we observe that c1 and c2, the parameters capturing temporal

changes in hazard rates for the two latent segments of portfolio holders, are quite similar

for the WS and WGS. Among both prime and subprime portfolios, the smaller segment

(p < 0.5) is characterized by an increasing hazard rate (c1 > 1). Increasing rates might

be explained by additional stress on households that have signed a mortgage contract they

cannot afford. In contrast, the larger segment ((1−p) > 0.5) is characterized by a decreasing

hazard rate (c2 < 1). This phenomenon may correspond to mortgage holders’ growing equity

and increasing financial losses in case of default. Both the WS and WGS suggest that this

segment is also practically default-free, though it is hard to qualify this statement due to

the latent nature of the segmentation.

Our results also suggest a key difference between prime and subprime portfolios. In the

subprime portfolios, the risky segment with increasing hazard rates (c1 > 1) constitutes

roughly twenty percent of mortgage holders (p ≈ 0.2). A similar 20-80 segmentation of

mortgage holders into risky/non-risky classes was detected by Soyer and Xu (2010) in EPD
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(early default) data. Among prime portfolios, the risky segment constitutes less than five

percent of mortgage holders (p < 0.05). A minor difference in the WS default rate parameters

for prime portfolios (λ ≈ 0.00022) and subprime portfolios (λ ≈ 0.00019)is hardly significant.

Thus our results support the suggestion that both prime and subprime portfolios may contain

risky segments characterized by increasing default rates.
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